Berenger, J. P., 1994. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys. , 114(2): 185–200 doi: 10.1006/jcph.1994.1159 |
Biot, M. A., 1956a. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range. J. Acoust. Soc. Am. , 28(2): 168–178 doi: 10.1121/1.1908239 |
Biot, M. A., 1956b. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher-Frequency Range. J. Acoust. Soc. Am. , 28(2): 179–191 doi: 10.1121/1.1908241 |
Cerjan, C., Kosloff, D., Kosloff, R., et al., 1985. A Nonreflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equations. Geophysics, 50(4): 705–708 doi: 10.1190/1.1441945 |
Chew, W. C., Liu, Q. H., 1996. Perfectly Matched Layers for Elastodynamics: A New Absorbing Boundary Condition. J. Comp. Acoust. , 4(4): 341–359 doi: 10.1142/S0218396X96000118 |
Chew, W. C., Weedon, W. H., 1994. A 3-D Perfectly Matched Medium from Modified Maxwell's Equations with Stretched Coordinates. Microw. Opt. Technol. Lett. , 7(13): 599–604 doi: 10.1002/mop.4650071304 |
Clayton, R., Engquist, B., 1977. Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations. Bull. Seism. Soc. Am. , 67: 1529–1540 doi: 10.1785/BSSA0670061529 |
Dai, N., Vafidis, A., Kanasewieh, E. R., 1995. Wave Propagation in Heterogeneous, Porous Media: A Velocity-Stress, Finite Difference Method. Geophysics, 60(2): 327–340 doi: 10.1190/1.1443769 |
He, J. Q., Liu, Q. H., 1999. A Nonuniform Cylindrical FDTD Algorithm with Improved PML and Quasi-PML Absorbing Boundary Conditions. IEEE Trans. Geosci. Remote Sensing, 37(2): 1066–1072 doi: 10.1109/36.752224 |
Kosloff, R., Kosloff, D., 1986. Absorbing Boundary for Wave Propagation Problems. J. Comp. Phys. , 63: 363–376 doi: 10.1016/0021-9991(86)90199-3 |
Li, X. F., Li, X. F., 2008. Numerical Simulation of Seismic Wave Propagation in Complex Media by Convolutional Differentiator. Acta Seismologica Sinica, 21(4): 380–385 (in Chinese with English Abstract) doi: 10.1007/s11589-008-0380-4 |
Liao, Z. P., Wong, H. L., 1984. A Transmitting Boundary for the Numerical Simulation of Elastic Wave Analysis. International Journal of Soil Dynamic, 3(4): 174–183 |
Liu, Q. H., 1997. An FDTD Algorithm with Perfectly Matched Layers for Conductive Media. Microw. Opt. Technol. Lett. , 14(2): 134–137 doi: 10.1002/(SICI)1098-2760(19970205)14:2<134::AID-MOP17>3.0.CO;2-B |
Liu, Q. H., 1999. Perfectly Matched Layers for Elastic Waves in Cylindrical and Spherical Coordinates. J. Acoust. Soc. Am. , 105(4): 2075–2084 doi: 10.1121/1.426812 |
Liu, Q. H., Tao, J. P., 1997. The Perfectly Matched Layer for Acoustic Waves in Absorptive Media. J. Acoust. Soc. Am. , 102(4): 2072–2082 doi: 10.1121/1.419657 |
Pei, Z. L., 2006. Two-Dimensional Numerical Simulation of Elastic Wave Propagation in 2-D Anisotropic Two-Phase Media with Staggered-Grid High-Order Difference Method. Journal of China University of Petroleum (Edition of Natural Science), 30(2): 16–20 (in Chinese with English Abstract) |
Smith, W. D., 1974. A Nonreflecting Plane Boundary for Wave Propagation Problems. J. Comp. Phys. , 15(4): 492–503 doi: 10.1016/0021-9991(74)90075-8 |