Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 3
Jun 2011
Turn off MathJax
Article Contents
Xinfu Li. PML Absorbing Boundary Condition for Seismic Numerical Modeling by Convolutional Differentiator in Fluid-Saturated Porous Media. Journal of Earth Science, 2011, 22(3): 377-377. doi: 10.1007/s12583-011-0190-9
Citation: Xinfu Li. PML Absorbing Boundary Condition for Seismic Numerical Modeling by Convolutional Differentiator in Fluid-Saturated Porous Media. Journal of Earth Science, 2011, 22(3): 377-377. doi: 10.1007/s12583-011-0190-9

PML Absorbing Boundary Condition for Seismic Numerical Modeling by Convolutional Differentiator in Fluid-Saturated Porous Media

doi: 10.1007/s12583-011-0190-9
Funds:

the National Natural Science Foundation of China 40804008

More Information
  • Corresponding author: Xinfu Li, xinfuli@cugb.edu.cn
  • Received Date: 13 Sep 2009
  • Accepted Date: 15 Dec 2009
  • Publish Date: 01 Jun 2011
  • The perfectly matched layer (PML) was first introduced by Berenger as an absorbing boundary condition for electromagnetic wave propagation. In this article, a method is developed to extend the PML to simulating seismic wave propagation in fluid-saturated porous medium. This nonphysical boundary is used at the computational edge of a Forsyte polynomial convolutional differentiator (FPCD) algorithm as an absorbing boundary condition to truncate unbounded media. The incorporation of PML in Biot's equations is given. Numerical results show that the PML absorbing boundary condition attenuates the outgoing waves effectively and eliminates the reflections adequately.

     

  • loading
  • Berenger, J. P., 1994. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comput. Phys. , 114(2): 185–200 doi: 10.1006/jcph.1994.1159
    Biot, M. A., 1956a. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range. J. Acoust. Soc. Am. , 28(2): 168–178 doi: 10.1121/1.1908239
    Biot, M. A., 1956b. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher-Frequency Range. J. Acoust. Soc. Am. , 28(2): 179–191 doi: 10.1121/1.1908241
    Cerjan, C., Kosloff, D., Kosloff, R., et al., 1985. A Nonreflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equations. Geophysics, 50(4): 705–708 doi: 10.1190/1.1441945
    Chew, W. C., Liu, Q. H., 1996. Perfectly Matched Layers for Elastodynamics: A New Absorbing Boundary Condition. J. Comp. Acoust. , 4(4): 341–359 doi: 10.1142/S0218396X96000118
    Chew, W. C., Weedon, W. H., 1994. A 3-D Perfectly Matched Medium from Modified Maxwell's Equations with Stretched Coordinates. Microw. Opt. Technol. Lett. , 7(13): 599–604 doi: 10.1002/mop.4650071304
    Clayton, R., Engquist, B., 1977. Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations. Bull. Seism. Soc. Am. , 67: 1529–1540 doi: 10.1785/BSSA0670061529
    Dai, N., Vafidis, A., Kanasewieh, E. R., 1995. Wave Propagation in Heterogeneous, Porous Media: A Velocity-Stress, Finite Difference Method. Geophysics, 60(2): 327–340 doi: 10.1190/1.1443769
    He, J. Q., Liu, Q. H., 1999. A Nonuniform Cylindrical FDTD Algorithm with Improved PML and Quasi-PML Absorbing Boundary Conditions. IEEE Trans. Geosci. Remote Sensing, 37(2): 1066–1072 doi: 10.1109/36.752224
    Kosloff, R., Kosloff, D., 1986. Absorbing Boundary for Wave Propagation Problems. J. Comp. Phys. , 63: 363–376 doi: 10.1016/0021-9991(86)90199-3
    Li, X. F., Li, X. F., 2008. Numerical Simulation of Seismic Wave Propagation in Complex Media by Convolutional Differentiator. Acta Seismologica Sinica, 21(4): 380–385 (in Chinese with English Abstract) doi: 10.1007/s11589-008-0380-4
    Liao, Z. P., Wong, H. L., 1984. A Transmitting Boundary for the Numerical Simulation of Elastic Wave Analysis. International Journal of Soil Dynamic, 3(4): 174–183
    Liu, Q. H., 1997. An FDTD Algorithm with Perfectly Matched Layers for Conductive Media. Microw. Opt. Technol. Lett. , 14(2): 134–137 doi: 10.1002/(SICI)1098-2760(19970205)14:2<134::AID-MOP17>3.0.CO;2-B
    Liu, Q. H., 1999. Perfectly Matched Layers for Elastic Waves in Cylindrical and Spherical Coordinates. J. Acoust. Soc. Am. , 105(4): 2075–2084 doi: 10.1121/1.426812
    Liu, Q. H., Tao, J. P., 1997. The Perfectly Matched Layer for Acoustic Waves in Absorptive Media. J. Acoust. Soc. Am. , 102(4): 2072–2082 doi: 10.1121/1.419657
    Pei, Z. L., 2006. Two-Dimensional Numerical Simulation of Elastic Wave Propagation in 2-D Anisotropic Two-Phase Media with Staggered-Grid High-Order Difference Method. Journal of China University of Petroleum (Edition of Natural Science), 30(2): 16–20 (in Chinese with English Abstract)
    Smith, W. D., 1974. A Nonreflecting Plane Boundary for Wave Propagation Problems. J. Comp. Phys. , 15(4): 492–503 doi: 10.1016/0021-9991(74)90075-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(798) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return