Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 3
Jun 2011
Turn off MathJax
Article Contents
Guanxing Huang, Jichao Sun, Ying Zhang, Jihong Jing, Yuxi Zhang, Jingtao Liu. Distribution of Arsenic in Sewage Irrigation Area of Pearl River Delta, China. Journal of Earth Science, 2011, 22(3): 396-410. doi: 10.1007/s12583-011-0192-7
Citation: Guanxing Huang, Jichao Sun, Ying Zhang, Jihong Jing, Yuxi Zhang, Jingtao Liu. Distribution of Arsenic in Sewage Irrigation Area of Pearl River Delta, China. Journal of Earth Science, 2011, 22(3): 396-410. doi: 10.1007/s12583-011-0192-7

Distribution of Arsenic in Sewage Irrigation Area of Pearl River Delta, China

doi: 10.1007/s12583-011-0192-7
Funds:

the National Basic Research Program (973) of China 2010CB428804-1

the Basic Scientific Study Fund from the Institute of Hydrogeology and Environmental Geology 

Chinese Academy of Geological Sciences SK200801

Chinese Academy of Geological Sciences SK200911

More Information
  • Corresponding author: Guanxing Huang, huangguanxing2004@126.com
  • Received Date: 20 Mar 2010
  • Accepted Date: 13 Jun 2010
  • Publish Date: 01 Jun 2011
  • The aim of the present work is to investigate the distribution of arsenic (As) in sewage irrigation area, to deduce the migration and transformation mechanism of As in soil and groundwater, and to infer the source of As in soil and groundwater. This study is carried out in a sewage irrigation area of the Pearl River Delta, China. Surface water samples, soil samples, and groundwater samples from sewage irrigation area were analyzed for As and other elements. As contents in water samples were analyzed by hydride generation-atomic fluorescence spectroscopy, and As fractionation in soil samples was extracted using a seven-step sequential extraction method according to a seven fraction scheme: water soluble, ion exchangeable, bound to carbonate, weakly bound to organic matter, associated with oxides of iron (Fe) and manganese (Mn), strongly bound to organic matter, and the residual fraction. Waste water has content of As up to 16.8 μg/L in the study area. Soil has enriched As due to the irrigation of soil with waste water, and the total content of As in soil is about 0.7 times higher than the background value. Sequential extraction method reveals that the mean content of residual fraction in soil is more than 70%, releasable fraction (weakly organic fraction, Fe-Mn oxide fraction, and carbonate fraction) is about 20%-30%, whereas strongly organic and mobile fractions (water soluble and ion exchangeable) are within 0.2%. In the soil profile, the contents of water soluble, ion exchangeable, and carbonate fraction decrease with the depth, whereas the contents of other fractions are irregular with the depth. Using correlation analysis, it is concluded that water soluble fraction is easy to change into ion exchangeable and carbonate fraction, ion exchangeable fraction is easy to change into carbonate and Fe-Mn oxide fraction, and carbonate fraction is easy to change into weakly organic and Fe-Mn oxide fraction in the soil of study area. Organic matter and (hydr)oxides of Fe and aluminium (Al) in soil play an important role in controlling the distribution and mobility of As in soil. As concentrations in groundwater range from 2.8 to 21.0 μg/L, and it is inferred that As from waste water and the release of high As sediment (soil and aquifer medium) are the main sources for high As groundwater in study area. Using cluster analysis, it is concluded that reducing groundwater with slightly alkaline is beneficial to enrichment of As in groundwater, and hydroxides of Fe, Mn, and Al also play a key role for the enrichment of As in groundwater of the study area.

     

  • loading
  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., et al., 2004. Arsenic Enrichment in Groundwater of the Alluvial Aquifers in Bangladesh: An Overview. Applied Geochemistry, 19(2): 181-200 doi: 10.1016/j.apgeochem.2003.09.006
    Anawar, H. M., Akai, J., Komaki, K., et al., 2003. Geochemical Occurrence of Arsenic in Groundwater of Bangladesh: Sources and Mobilization Processes. J. Geochem. Explor. , 77(2-3): 109-131 doi: 10.1016/S0375-6742(02)00273-X
    Anawar, H. M., Akai, J., Mostofa, K. M. G., et al., 2002. Arsenic Poisoning in Groundwater Health Risk and Geochemical Sources in Bangladesh. Environment International, 27(7): 597-604 doi: 10.1016/S0160-4120(01)00116-7
    Appleyard, S. J., Angeloni, J., Watkins, R., 2006. Arsenic-Rich Ground Water in an Urban Area Experiencing Drought and Increasing Population Density, Perth, Australia. Applied Geochemistry, 21(1): 83-97 doi: 10.1016/j.apgeochem.2005.09.008
    Arunachalam, J., Emons, H., Krasnodebska, B., et al., 1996. Sequence Extraction Studies on Homogenized Forest Soil Samples. Science of the Total Environment, 181(2): 147-159 doi: 10.1016/0048-9697(95)05005-1
    Berg, M., Stengel, C., Trang, P. T. K., et al., 2007. Magnitude of Arsenic Pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Science of the Total Environment, 372(2-3): 413-425 doi: 10.1016/j.scitotenv.2006.09.010
    Busbee, M. W., Kocar, B. D., Benner, S. G., 2009. Irrigation Produces Elevated Arsenic in the Underlying Groundwater of a Semi-Arid Basin in Southwestern Idaho. Applied Geochemistry, 24(5): 843-859 doi: 10.1016/j.apgeochem.2009.01.011
    Chai, S. W., Wen, Y. M., Zhang, Y. N., et al., 2003. The Heavy Metal Content Character of Agricultural Soil in Guangzhou Suburbs. China Environmental Science, 23(6): 592-596 (in Chinese with English Abstract)
    Chai, S. W., Wen, Y. M., Wei, X. G., et al., 2004. Heavy Metal Content Characteristics of Agricultural Soils in the Pearl River Delta. Acta Scientiarum Naturalium Universitatis Sunyatseni, 43(4): 90-94 (in Chinese with English Abstract)
    Chakraborti, D., Sengupta, M. K., Rahman, M. M., et al., 2004. Groundwater Arsenic Contamination and Its Health Effects in the Ganga-Meghna-Brahmaputra Plain. J. Environ. Monit. , 6(6): 74N-83N doi: 10.1039/b406573p
    Chen, P. H., 1987. The Partition for the Quaternary Stratum of the Pearl River Delta. Renmin Zhujiang, (6): 16-24 (in Chinese)
    Chiu, V. Q., Hering, J. G., 2000. Arsenic Adsorption and Oxidation at Manganite Surfaces. 1. Method for Simultaneous Determination of Adsorbed and Dissolved Arsenic Species. Environ. Sci. Technol. , 34(10): 2029-2034
    Chowdhury, T. R., Basu, G. K., Mandal, B. K., et al., 1999. Arsenic Poisoning in the Ganges Delta. Nature, 401(6753): 545-546 doi: 10.1038/44052
    Dixit, S., Hering, J. G., 2003. Comparison of Arsenic (V) and Arsenic(III) Sorption onto Iron Oxide Minerals: Implications for Arsenic Mobility. Environ. Sci. Technol. , 37(18): 4182-4189 doi: 10.1021/es030309t
    Gee, G. W., Bauder, J. W., 1986. Particle-Size Analysis. In: Klute, A., ed., Methods of Soil Analysis, Part I, Physical and Mineralogical Methods. Agronomy Series No. 9. American Society of Agronomy, Madison, WI
    Goh, K. H., Lim, T. T., 2004. Geochemistry of Inorganic Arsenic and Selenium in a Tropical Soil: Effect of Reaction Time, pH, and Competitive Anions on Arsenic and Selenium Adsorption. Chemosphere, 55(6): 849-859 doi: 10.1016/j.chemosphere.2003.11.041
    Grafe, M., Eick, M. J., Grossel, P. R., 2001. Adsorption of Arsenate(V) and Arsenite(III) on Goethite in the Presence and Absence of Dissolved Organic Carbon. Soil Sci. Soc. Am. J. , 65(6): 1680-1687 doi: 10.2136/sssaj2001.1680
    Guo, H. M., Wang, Y. X., Li, Y. M., 2003. Analysis of Factors Resulting in Anomalous Arsenic Concentration in Groundwaters of Shanyin, Shanxi Province. Environmental Science, 24(4): 60-67 (in Chinese with English Abstract)
    Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., et al., 2002. Arsenic Mobility and Groundwater Extraction in Bangladesh. Science, 298(5598): 1602-1606 doi: 10.1126/science.1076978
    Janoš, P., Herzogová, L., Rejnek, J., et al., 2004. Assessment of Heavy Metals Leachability from Metallo-Organic Sorbent—Iron Humate—With the Aid of Sequential Extraction Test. Talanta, 62(3): 497-501 doi: 10.1016/j.talanta.2003.08.032
    Jiang, W., Zhang, S. Z., Shan, X. Q., et al., 2005. Adsorption of Arsenate on Soils—Part 2: Modeling the Relationship between Adsorption Capacity and Soil Physiochemical Properties Using 16 Chinese Soils. Environmental Pollution, 138(2): 285-289 doi: 10.1016/j.envpol.2005.03.008
    Kabata-Pendias, A., Pendias, H., 1984. Trace Elements in Soils and Plants. CRC Press, Boca Raton
    Korte, N. E., Fernando, Q., 1991. A Review of Arsenic (III) in Groundwater. Crit. Rev. Environ. Control, 21(1): 1-39 doi: 10.1080/10643389109388408
    Krishna, M., Chandrasekaran, K., Karunasagar, D., et al., 2001. A Combined Treatment Approach Using Fenton's Reagent and Zero Valent Iron for the Removal of Arsenic from Drinking Water. Journal of Hazardous Materials, 84(2-3): 229-240 doi: 10.1016/S0304-3894(01)00205-9
    Li, J. L., He, M., Sun, S. Q., et al., 2009. Effect of the Behavior and Availability of Heavy Metals on the Characteristics of the Coastal Soils Developed from Alluvial Deposits. Environmental Monitoring and Assessment, 156(1-4): 91-98 doi: 10.1007/s10661-008-0465-5
    Mckeague, J. A., Day, J. H., 1966. Dithionite and Oxalate-Extractable Fe and Al as Aids in Differentiating Various Classes of Soils. Canadian J. Soil Sci. , 46: 13-22 doi: 10.4141/cjss66-003
    Mo, Z., Wang, C. X., Chen, Q., et al., 2002. Form Distribution and Transformation of Heavy Metals of Cu, Pb, Zn, Cr and Cd in Soils. Agro-environmental Protection, 21(1): 9-12 (in Chinese with English Abstract)
    Naidu, R., Smith, E., Huq, S. M. I., et al., 2009. Sorption and Bioavailability of Arsenic in Selected Bangladesh Soils. Environmental Geochemistry and Health, 31: 61-68
    Navarro, A. F., Cegarra, J., Roig, A., et al., 1991. An Automatic Microanalysis Method for the Determination of Organic Carbon in Wastes. Communications in Soil Science and Plant Analysis, 22(19-20): 2137-2144 doi: 10.1080/00103629109368563
    Nickson, R. T., McArthur, J., Burgess, W., et al., 1998. Arsenic Poisoning of Bangladesh Groundwater. Nature, 395(6700): 338-338 doi: 10.1038/26387
    Nickson, R. T., McArthur, J. M., Ravenscroft, P., et al., 2000. Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4): 403-413 doi: 10.1016/S0883-2927(99)00086-4
    Norra, S., Berner, Z. A., Agarwala, P., et al., 2005. Impact of Irrigation with As Rich Ground Water on Soil and Crops: A Geochemical Case Study in West Bengal Delta Plain, India. Applied Geochemistry, 20(10): 1890-1906 doi: 10.1016/j.apgeochem.2005.04.019
    Ouyang, T. P., Kuang, Y. Q., Tan, J. J., et al., 2004. Spatial Distribution of Trace Element in Rivers in the Pearl River Delta Economic Zone. Hydrogeology and Engineering Geology, (4): 66-69 (in Chinese with English Abstract)
    Park, J. M., Lee, J. S., Lee, J. U., et al., 2006. Microbial Effects on Geochemical Behavior of Arsenic in As-Contaminated Sediments. J. Geochem. Explor. , 88(1-3): 134-138 doi: 10.1016/j.gexplo.2005.08.026
    Polizzotto, M. L., Kocar, B. D., Benner, S. G., et al., 2008. Near Surface Wetland Sediments as a Source of Arsenic Release to Ground Water in Asia. Nature, 454(7203): 505-508 doi: 10.1038/nature07093
    Rowland, H. A. L., Polya, D. A., Lloyd, J. R., et al., 2006. Characterisation of Organic Matter in a Shallow, Reducing, Arsenic-Rich Aquifer, West Bengal. Organic Geochemistry, 37(9): 1101-1114 doi: 10.1016/j.orggeochem.2006.04.011
    Schreiber, M. E., Gotkowitz, M. B., Simo, J. A., et al., 2003. Mechanism of Arsenic Release to Ground Water from Naturally Occurring Sources, Eastern Wisconsin. In: Welch, A. H., Stollenwerk, K. G., eds., Arsenic in Ground Water. Kluwer Academic Publishers, Boston
    Seyler, P., Martin, J. M., 1989. Biogeochemical Processes Affecting Arsenic Species Distribution in a Permanently Stratified Lake. Environ. Sci. Technol. , 23(10): 1258-1263 doi: 10.1021/es00068a012
    Singh, A. K., Hasnain, S. I., Benerjee, D. K., 1999. Grain Size and Geochemical Partitioning of Heavy Metals in Sediments of the Damodar River—A Tributary of the Lower Ganga, India. Environmental Geology, 39(1): 90-98 doi: 10.1007/s002540050439
    Smedley, P. I., Kinniburgh, D. G., 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517-568 doi: 10.1016/S0883-2927(02)00018-5
    Smedley, P. L., Nicolli, H. B., Macdonald, D. M. J., et al., 2002. Hydrogeochemistry of Arsenic and Other Inorganic Constituents in Groundwaters from La Pampa, Argentina. Applied Geochemistry, 17(3): 259-284 doi: 10.1016/S0883-2927(01)00082-8
    Smith, A. H., Hopenhayn-Rich, C., Bates, M. N., et al., 1992. Cancer Risks from Arsenic in Drinking Water. Environ. Health Perspect. , 97: 259-267 doi: 10.1289/ehp.9297259
    Smith, A. H., Lingas, E. O., Rahman, M., 2000. Contamination of Drinking-Water by Arsenic in Bangladesh: A Public Health Emergency. Bull. WHO, 78(9): 1093-1103
    Smith, E., Naidu, R., Alston, A. M., 1998. Arsenic in the Soil Environment: A Review. Advance in Agronomy, 64: 149-195
    Sracek, O., Bhattacharya, P., Jacks, G., et al., 2004. Behavior of Aarsenic and Geochemical Modeling of Arsenic Enrichment in Aqueous Environments. Applied Geochemistry, 19(2): 169-180 doi: 10.1016/j.apgeochem.2003.09.005
    Stollenwerk, K. G., Breit, G. N., Welch, A. H., et al., 2007. Arsenic Attenuation by Oxidized Aquifer Sediments in Bangladesh. Science of the Total Environment, 379(2-3): 133-150 doi: 10.1016/j.scitotenv.2006.11.029
    Stüben, D., Berner, Z., Chandrasekharam, D., et al., 2003. Arsenic Enrichment in Groundwater of West Bengal, India: Geochemical Evidence for Mobilization of As under Reducing Conditions. Applied Geochemistry, 18(9): 1417-1434 doi: 10.1016/S0883-2927(03)00060-X
    Sun, J. C., Jing, J. H., Liu, J. T., et al., 2007. Report on the Investigation and Assessment of Groundwater Contamination in Pearl River Delta Area. The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang (in Chinese)
    Tang, L. S., Liao, H. R., Liao, Z. Q., et al., 2004. The Geological Environment Zoning and Character in the Pearl River Delta. Acta Scientiarum Naturalium Universitatis Sunyatseni, 43(Suppl. ): 229-233 (in Chinese with English Abstract)
    Terminal of Environmental Monitoring of China, 1990. Background Value of Soil Element in China. China Environmental Science Press, Beijing. 501 (in Chinese)
    Tessier, A., Campbell, P. G. C., Bisson, M., 1979. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 51(7): 844-851 doi: 10.1021/ac50043a017
    Tondel, M., Rahman, M., Magnuson, A., et al., 1999. The Relationship of Arsenic Levels in Drinking Water and the Prevalence Rate of Skin Lesions in Bangladesh. Environ. Health Perspect. , 107(9): 727-729 doi: 10.1289/ehp.99107727
    Ure, A. M., Quevauviller, P., Muntau, H., et al., 1993. Speciation of Heavy Metals in Soils and Sediments—An Account of the Improvement and Harmonization of Extraction Techniques Undertaken under the Auspices of the BCR of the Commission-of-the-European-Communities. Int. J. Environ. Anal. Chem. , 51(1-4): 135-151 doi: 10.1080/03067319308027619
    Varsányi, I., Fodré, Z., Bartha, A., 1991. Arsenic in Drinking Water and Mortality in the Southern Great Plain, Hungary. Environmental Geochemistry and Health, 13(1): 14-22 doi: 10.1007/BF01783491
    Vodyanitskii, Y. N., 2009. Chromium and Arsenic in Contaminated Soils. Eurasian Soil Science, 42(5): 507-515 doi: 10.1134/S1064229309050056
    Wang, S. W., Liu, C. W., Jang, C. S., 2007. Factors Responsible for High Arsenic Concentrations in Two Groundwater Catchments in Taiwan. Applied Geochemistry, 22(2): 460-476 doi: 10.1016/j.apgeochem.2006.11.011
    Wei, X. G., He, J. H., Wang, S. Y., et al., 2002. Investigation and Evaluation on Heavy Metal Pollution of Vegetable Farm Soils in Guangzhou. Soil and Environmental Science, 11(3): 252-254 (in Chinese with English Abstract)
    Welch, A. H., Lico, M. S., 1998. Factors Controlling As and U in Shallow Ground Water, Southern Carson Desert, Nevada. Applied Geochemistry, 13(4): 521-539 doi: 10.1016/S0883-2927(97)00083-8
    World Health Organization (WHO), 1981. Arsenic Environmental Health Criteria 18. International Program on Chemical Safety, Geneva
    World Health Organization (WHO), 2004. Guidelines for Drinking Water Quality (Third Edition). Geneva
    Xie, X. J., Wang, Y. X., Duan, M. Y., et al., 2009. Geochemical and Environmental Magnetic Characteristics of High Arsenic Aquifer Sediments from Datong Basin, Northern China. Environmental Geology, 58(1): 45-52 doi: 10.1007/s00254-008-1489-4
    Yang, J., Zheng, Y. M., Chen, T. B., et al., 2006. Leaching of Heavy Metals in Soil Column under Irrigation Reclaimed Water: A Simulation Experiment. Geographical Research, 25(3): 449-456 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article Metrics

    Article views(947) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return