Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 4
Aug 2011
Turn off MathJax
Article Contents
Kaiming Li, Huilin Li, Lin Wang, Wenyu Gao. On the Relationship between Local Topography and Small Glacier Change under Climatic Warming on Mt. Bogda, Eastern Tian Shan, China. Journal of Earth Science, 2011, 22(4): 515-527. doi: 10.1007/s12583-011-0204-7
Citation: Kaiming Li, Huilin Li, Lin Wang, Wenyu Gao. On the Relationship between Local Topography and Small Glacier Change under Climatic Warming on Mt. Bogda, Eastern Tian Shan, China. Journal of Earth Science, 2011, 22(4): 515-527. doi: 10.1007/s12583-011-0204-7

On the Relationship between Local Topography and Small Glacier Change under Climatic Warming on Mt. Bogda, Eastern Tian Shan, China

doi: 10.1007/s12583-011-0204-7
Funds:

the National Basic Research Program of China 2010CB951003

the Knowledge Innovation Project of the Chinese Academy of Sciences KZCX2-EW-311

the National Natural Science Foundation of China 1141001040

the National Natural Science Foundation of China J0930003/J0109

More Information
  • Corresponding author: Kaiming Li, lkm_wd@126.com
  • Received Date: 10 Sep 2010
  • Accepted Date: 30 Dec 2010
  • Publish Date: 01 Aug 2011
  • Glacial features in the geological record provide essential clues about past behavior of climate. Of the numerous physical systems on earth, glaciers are one of most responsive to climate change, especially small glaciers, their direct marginal response taking only a few years or decades to be expressed. Accelerating recession of modern glaciers raises the issue of the climate's impact on water runoff. Data based on topographic maps and Advanced Spaceborne Thermal Emission and Radiometer (ASTER) imagery show the trends that are highly variable over time and within the region. An analysis of the local topographic settings of very small (< 0.5 km2) glaciers was conducted to investigate their influence on recent changes in these glaciers. Among 137 glaciers, 12 disappeared completely. The study reveals that glaciers situated in favorable locations had tiny relative area reduction, while those in less favorable settings generally had large area loss or even disappeared. It is suggested that most of the small glaciers studied have retreated as far as they are likely to under the climatic conditions of the late 20th century. Undoubtedly, the strong retreating of small glaciers exerts adverse effects on the hydrologic cycle and local socioeconomic development.

     

  • loading
  • Akhtar, M., Ahmad, N., Booij, M. J., 2008. The Impact of Climate Change on the Water Resources of Hindukush-Karakorum-Himalaya Region under Different Glacier Coverage Scenarios. Journal of Hydrology, 335(1–4): 148–163 http://www.sciencedirect.com/science/article/pii/S0022169408001480
    Alley, R. B., Marotzke, J., Nordhaus, W. D., et al., 2003. Abrupt Climate Change. Science, 299(5615): 2005–2010 doi: 10.1126/science.1081056
    Anderson, B., Mackintosh, A., Stumm, D., et al., 2010. Climate Sensitivity of High-Precipitation Glacier in New Zealand. Journal of Glaciology, 56(195): 114–128 doi: 10.3189/002214310791190929
    Arnold, N. S., Rees, W. G., Hodson, A. J., et al., 2006. Topographic Controls on the Surface Energy Balance of a High Arctic Valley Glacier. Journal of Geophysical Research, 111(F2): F02011 doi: 10.1029/2005JF000426
    Beniston, M., 2006. Mountain Weather and Climate: A General Overawe and a Focus on Climatic Change in the Alps. Hydrobiologia, 562: 3–16 doi: 10.1007/s10750-005-1802-0
    Bolch, T., 2007. Climate Change and Glacier Retreat in Northern Tien Shan (Kazakhstan/Kyrgyzstan) Using Remote Sensing Data. Global and Planetary Change, 56(1–2): 1–12 http://www.researchgate.net/profile/Tobias_Bolch/publication/222886992_Climate_change_and_glacier_retreat_in_northern_TieShan(KazakhstanKyrgyzstan)_using_remote_sensing_data._Glob_Planet_Chang_56(1-2)1-12/links/54edd9c20cf2e55866f180a5.pdf
    Brázdil, R., Valasek, H., Chroma, K., 2006. Documentary Evidence of an Economic Character as a Source for the Study of Meteorological and Hydrological Extremes and Their Impacts on Human Activities. Geografiska Annaler: Series A, 88A(2): 79–86
    Chen, J. Y., Ohmura, A., 1990. On the Influence of Alpine Glaciers on Runoff. Hydrology in Mountain Regions, 193: 117–125
    Chen, X., Luo, G. P., Xia, J., et al., 2005. Ecological Response to the Climate Change on the Northern Slope of the Tianshan Mountains in Xinjiang. Science in China (Series D), 48(6): 765–777
    Crocker, R. L., Major, J., 1955. Soil Development in Relation to Vegetation and Surface Age at Glacier Bay, Alaska. The Journal of Ecology, 43(2): 427–448 doi: 10.2307/2257005
    Debeer, C. M., Sharp, M. J., 2009. Topographic Influences on Recent Changes of very Small Glaciers in the Monashee Mountains, British Columbia, Canada. Journal of Glaciology, 55(192): 691–700 doi: 10.3189/002214309789470851
    Engstrom, D. R., Fritz, S. C., Almendinger, J. E., et al., 2000. Chemical and Biological Trends during Lake Evolution in Recently Deglaciated Terrain. Nature, 408(6809): 161–166 doi: 10.1038/35041500
    Evans, I. S., 2006. Local Aspect Asymmetry of Mountain Glaciation: A Global Survey of Consistency of Favoured Directions for Glacier Numbers and Altitudes. Geomorphology, 73(1–2): 166–184 http://www.onacademic.com/detail/journal_1000035389224910_895d.html
    Fastie, C. L., 1995. Causes and Ecosystem Consequences of Multiple Pathways of Primary Succession at Glacier Bay, Alaska. Ecology, 76(6): 1899–1916 doi: 10.2307/1940722
    Granshaw, F. D., Fountain, A. G., 2006. Glacier Change (1958–1998) in the North Cascades National Park Complex, Washington, USA. Journal of Glaciology, 52(177): 251–256 doi: 10.3189/172756506781828782
    Hagg, W., Braun, L. N., Kuhn, M., et al., 2007. Modeling of Hydrological Response to Climate Change in Glacierized Central Asian Catchments. Journal of Hydrology, 332(1–2): 40–53
    Hoelzle, M., Haeberli, W., Dischl, M., et al., 2003. Secular Glacier Mass Balances Derived from Culumative Glaciers Length Changes. Global and Planetary Change, 36(4): 295–306 doi: 10.1016/S0921-8181(02)00223-0
    Hu, R. J., Fan, Z. L., Wang, Y. J., 2001. Assessment about the Impact of Climate Change on Environment in Xinjiang since Recent 50 Years. Arid Land Geography, 24(2): 97–103 (in Chinese with English Abstract)
    Huggel, C., Kääb, A., Haeberli, W., et al., 2003. Regional-Scale GIS-Models for Assessment of Hazards from Glacier Lake Outbursts: Evaluation and Application in the Swiss Alps. Natural Hazards and Earth System Science, 3(6): 647–662 doi: 10.5194/nhess-3-647-2003
    Huss, M., Bauder, A., Werder, M., et al., 2007. Glacier-Dammed Lake Outburst Events of Gornersee, Switzerland. Journal of Glaciology, 53(181): 189–200 doi: 10.3189/172756507782202784
    Huss, M., Farinotti, D., Bauder, A., et al., 2008. Modelling Runoff from Highly Glacierized Alpine Drainage Basins in a Changing Climate. Hydrological Processes, 22(19): 3888–3902 doi: 10.1002/hyp.7055
    Huss, M., Funk, M., Ohmura, A., 2009. Strong Alpine Glacier Melt in the 1940s due to Enhanced Solar Radiation. Geophysical Research Letters, 36: L23501 doi: 10.1029/2009GL040789
    Jiang, F. Q., Hu, R. J., 2004. Climate Change and Flood & Drought Disasters in Xinjiang during Recent 50 years. Journal of Desert Research, 24(1): 35–40 (in Chinese with English Abstract)
    Kääb, A., Huggel, C., Guex, S., et al., 2005. Glacier Hazard Assessment in Mountains Using Satellite Optical Data. EARSel eProceedings, 4(1): 79–93 http://www.researchgate.net/profile/Jean_Schneider2/publication/236954279_Glacier_hazard_assessment_in_mountains_using_satellite_optical_data/links/0c96053b42ef1c9586000000
    Kääb, A., Paul, F., Maisch, M., et al., 2002. The New Remote-Sensing-Derived Swiss Glacier Inventory: Ⅱ. First Results. Annals of Glaciology, 34(34): 362–366 http://www.ingentaconnect.com/content/igsoc/agl/2002/00000034/00000001/art00054
    Klok, E. J., Oerlemans, J., 2002. Model Study of the Spatial Distribution of the Energy and Mass Balance of Morteratschgletscher, Switzerland. Journal of Glaciology, 48(163): 505–518 doi: 10.3189/172756502781831133
    Kutuzov, S., Shahgedanova, M., 2009. Glacier Retreat and Climatic Variability in the Eastern Terskey-Alatoo, Inner Tien Shan between the Middle of the 19th Century and Beginning of the 21st Century. Global and Planetary Change, 69(1–2): 59–70 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0921818109001143&originContentFamily=serial&_origin=article&_ts=1484091601&md5=6c6291ecf84413e5b3fa1796099a0693
    Li, Z. Q., Shen, Y. P., Wang, F. T., et al., 2007. Response of Glacier Melting to Climate Change—Take Uruqmi Glacier No. 1 as an Example. Journal of Glaciology and Geocryology, 29(3): 333–342 (in Chinese with English Abstract) http://www.scienceopen.com/document?vid=0c3ad3b1-ad0b-422e-a392-7e635cb61a2d
    Lopez-Moreno, J. I., Nogues-Bravo, D., Chueca-Cía, J., et al., 2006. Change of Topographic Control on the Extent of Cirque Glaciers since the Little Ice Age. Geophysical Research Letters, 33(24): L24505 doi: 10.1029/2006GL028204
    Meybeck, M., Green, P., Vorosmarty, C., 2001. A New Typology for Mountains and Other Relief Classes: An Application to Global Continental Water Resources and Population Distribution. Mountain Research and Development, 21(1): 34–45 doi: 10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2
    Narama, C., Kääb, A., Duishonakunov, M., et al., 2010. Spatial Variability of Recent Glacier Area Changes in the Tien Shan Mountains, Central Asia, Using Corona (~1970), Landsat (~2000), and ALOS (~2007) Satellite Data. Global and Planetary Change, 71(1–2): 42–54 http://www.researchgate.net/profile/Murataly_Duishonakunov4/publication/229304812_Spatial_variability_of_recent_glacier_area_changes_in_the_Tien_Shan_Mountains_Central_Asia_using_Corona_(1970)_Landsat_(2000)_and_ALOS_(2007)_satellite_data/links/553e6df10cf20184050f848e.pdf
    Oerlemans, J., Knap, W. H., 1998. A 1 Year Record of Global Radiation and Albedo in the Ablation Zone of Morteratschgletscher, Switzerland. Journal of Glaciology, 44(147): 231–238 doi: 10.1017/S0022143000002574
    Oerlemans, J., Reichert, B. K., 2000. Relating Glacier Mass Balance to Meteorological Data by Using a Seasonal Sensitivity Characteristic. Journal of Glaciology, 46(152): 1–6 doi: 10.3189/172756500781833269
    Paul, F., Kaab, A., Maisch, M., et al., 2004a. Rapid Disintegration of Alpine Glaciers Observed with Satellite Data. Geophysical Research Letters, 31(21): L21402
    Paul, F., Huggel, C., Kaab, A., 2004b. Combining Satellite Multispectral Image Data and A Digital Elevation Model for Mapping Debris-Covered Glaciers. Remote Sensing of Environment, 89(4): 510–518 doi: 10.1016/j.rse.2003.11.007
    Peters, R. L., Darling, J. D. S., 1985. The Greenhouse Effect and Nature Reserves: Global Warming Would Diminish Biological Diversity by Causing Extinctions among Reserve Species. Bioscience, 35(11): 707–717 doi: 10.2307/1310052
    Racoviteanu, A. E., Arnaud, Y., Williams, M. W., et al., 2008. Decadal Changes in Glacier Parameters in the Cordillera Blanca, Peru, Derived from Remote Sensing. Journal of Glaciology, 54(186): 499–510 doi: 10.3189/002214308785836922
    Raup, B., Kääb, A., Kargel, J. S., et al., 2007a. Remote Sensing and GIS Technology in the Global Land Ice Measurements from Space (GLIMS) Project. Computer & Geosciences, 33(1): 104–125
    Raup, B., Racoviteanu, A., Khalsa, S. J. S., et al., 2007b. The GLIMS Geospatial Glacier Database: A New Tool for Studying Glacier Change. Global and Planetary Change, 56(1–2): 101–110 http://glims.org:8080/glacierdata/data/lit_ref_files/raup2007b.pdf
    Shi, Y. F., Shen, Y. P., Kang, E., et al., 2007. Recent and Future Climate Change in Northwest China. Climatic Change, 80(3–4): 379–393 http://ir.casnw.net/bitstream/362004/14915/2/Shi-2007-Recent%20and%20future%20cl.pdf
    Svoboda, F., Paul, F., 2009. A New Glacier Inventory on Southern Baffin Island, Canada, from ASTER Data: I. Applied Methods, Challenges and Solutions. Annals of Glaciology, 50(53): 11–21
    Vincent, C., Kappenberger, G., Valla, F., et al., 2004. Ice Ablation as Evidence of Climate Change in the Alps over the 20th Century. Journal of Geophysical Research, 109(D10): D10104 doi: 10.1029/2003JD003857
    Wang, Z., 1993. The Glacier Variation and Influence since Little Ice Age and Future Trends in Northwest Region, China. Scientia Geographica Sinica, 13: 97–104 (in Chinese with English Abstract)
    Wu, G. H., Yutaka, A., Qiu, J. Q., 1983. Physical Geographic Features and Climatic Conditions of Glacial Development in Bogda Area, Tian Shan. Journal of Glaciology and Geocryology, 5(3): 5–16 (in Chinese with English Abstract)
    Yao, T. D., Wang, Y. D., Liu, S. Y., et al., 2004. Recent Glacial Retreat in High Asia in China and Its Impacts on Water Resource in Northwest China. Science in China (Series D), 47(12): 1065–1075 doi: 10.1360/03yd0256
    Ye, B. S., Yang, D. Q., Jiao, K. Q., et al., 2005. The Urumqi River Source Glacier No. 1, Tianshan, China: Changes over the Past 45 Years. Geophysical Research Letters, 32(21): L21504
    Zhang, W. J., 1982. Chinese-Japanese Joint Investigation for Mt. Bogda Glacier. Journal of Glaciology and Geocryology, 4(2): 86–87 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views(672) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return