Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 6
Dec 2011
Turn off MathJax
Article Contents
Qiang Liu, Yao Wu, Junfeng Zhang. Experimental Investigation on Low-Degree Dehydration Partial Melting of Biotite Gneiss and Phengite-Bearing Eclogite at 2 GPa. Journal of Earth Science, 2011, 22(6): 677-687. doi: 10.1007/s12583-011-0219-0
Citation: Qiang Liu, Yao Wu, Junfeng Zhang. Experimental Investigation on Low-Degree Dehydration Partial Melting of Biotite Gneiss and Phengite-Bearing Eclogite at 2 GPa. Journal of Earth Science, 2011, 22(6): 677-687. doi: 10.1007/s12583-011-0219-0

Experimental Investigation on Low-Degree Dehydration Partial Melting of Biotite Gneiss and Phengite-Bearing Eclogite at 2 GPa

doi: 10.1007/s12583-011-0219-0
Funds:

the National Natural Science Foundation of China 40802046

the National Natural Science Foundation of China 90714005

the National Key Basic Research Program from MOST 2009CB825003

More Information
  • Corresponding author: Qiang Liu, liuqiang@cug.edu.cn
  • Received Date: 10 Aug 2011
  • Accepted Date: 15 Sep 2011
  • Publish Date: 01 Dec 2011
  • The ultrahigh-pressure (UHP) eclogite and gneiss from the Dabie (大别)-Sulu (苏鲁) orogen experienced variable degrees of partial melting during exhumation. We report here dehydration partial melting experiments of biotite gneiss and phengite-bearing eclogite at 2 GPa and 800–950 ℃. Our results show that the partial melting of gneiss is associated with the breakdown of biotite into almandine-rich garnet starting at 900 °. About 10% granitic melt can be produced at 950 ℃. In contrast, the partial melting of phengite-bearing eclogite exists at slightly lower temperatures (800–850 ℃). The melt fraction is in general more in biotite gneiss than in phengite-bearing eclogite under similar pressure and temperature conditions. Both melts are rich in silica and alkali, but poor in FeO, MgO and CaO. These results suggest that low-degree partial melting of gneiss and eclogite is often associated with dehydration of hydrous mineral, such as micas. The dehydration temperature and melt composition can place important constraints on the partial melting phenomena (granitic leucosome and multi-phase mineral inclusions) recorded in UHP rocks.

     

  • loading
  • Auzanneau, E., Vielzeuf, D., Schmidt, M. W., 2006. Experimental Evidence of Decompression Melting during Exhumation of Subducted Continental Crust. Contrib. Mineral. Petrol., 152: 125–148 doi: 10.1007/s00410-006-0104-5
    Bureau, H., Keppler, H., 1999. Complete Miscibility between Silicate Melts and Hydrous Fluids in the Upper Mantle: Experimental Evidence and Geochemical Implications. Earth Planet. Sci. Lett., 165: 187–196 doi: 10.1016/S0012-821X(98)00266-0
    Chen, R. X., Zheng, Y. F., Gong, B., et al., 2007. Origin of Retrograde Fluid in Ultrahigh-Pressure Metamorphic Rocks: Constraints from Mineral Hydrogen Isotope and Water Content Changes in Eclogite-Gneiss Transitions in the Sulu Orogen. Geochim. Cosmochim. Acta, 71(9): 2299–2325 doi: 10.1016/j.gca.2007.02.012
    Ernst, W. G., 2006. Preservation/Exhumation of Ultra-High-Pressure Subduction Complexes. Lithos, 92: 321–335 doi: 10.1016/j.lithos.2006.03.049
    Ferrando, S., Frezzotti, M. L., Dallai, L., et al., 2005. Multiphase Solid Inclusions in UHP Rocks (Su-Lu, China): Remnants of Supercritical Silicate-Rich Aqueous Fluids Released during Continental Subduction. Chem. Geol., 223: 68–81 doi: 10.1016/j.chemgeo.2005.01.029
    Gardien, V., Thompson, A. B., Ulmer, P., 2000. Melting of Biotite+ Plagioclase+Quartz Gneisses: The Role of H2O in the Stability of Amphibole. J. Petrol., 41(5): 651–666 doi: 10.1093/petrology/41.5.651
    Hermann, J., 2002. Experimental Constraints on Phase Relations in Subducted Continental Crust. Contrib. Mineral. Petrol., 143: 219–235 doi: 10.1007/s00410-001-0336-3
    Hermann, J., Green, D. H., 2001. Experimental Constraints on High Pressure Melting in Subducted Crust. Earth Planet. Sci. Lett., 188: 149–168 doi: 10.1016/S0012-821X(01)00321-1
    Hermann, J., Spandler, C., Hack, A., et al., 2006. Aqueous Fluids and Hydrous Melts in High-Pressure and Ultra-High Pressure Rocks: Implications for Element Transfer in Subduction Zones. Lithos, 92: 399–417 doi: 10.1016/j.lithos.2006.03.055
    Holyoke, C. W. III, Tullis, J., 2006. The Interaction between Reaction and Deformation: An Experimental Study Using a Biotite+Plagioclase+Quartz Gneiss. J. Metamorph. Geol., 24: 743–762 doi: 10.1111/j.1525-1314.2006.00666.x
    Hwang, S. L., Shen, P. Y., Chu, H. T., et al., 2004. Kokchetavite: A New Potassium-Feldspar Polymorph from the Kokchetav Ultrahigh-Pressure Terrane. Contrib. Mineral. Petrol., 148: 380–389 doi: 10.1007/s00410-004-0610-2
    Klimm, K., Blundy, J. D., Green, T. H., 2008. Trace Element Partitioning and Accessory Phase Saturation during H2O-Saturated Melting of Basalt with Implications for Subduction Zone Chemical Fluxes. J. Petrol., 49(10): 523–553
    Labrousse, L., Jolivet, L., Agard, P., et al., 2002. Crustal-Scale Boudinage and Migmatization of Gneiss during Their Exhumation in the UHP Province of Western Norway. Terra Nova, 14: 263–270 doi: 10.1046/j.1365-3121.2002.00422.x
    Lang, H. M., Gilotti, J. A., 2007. Partial Melting of Metapelites at Ultrahigh-Pressure Conditions, Greenland Caledonides. J. Metamorph. Geol., 25(2): 129–147 doi: 10.1111/j.1525-1314.2006.00687.x
    Liu, F. L., Xu, H. M., Liu, P. H., 2009. Partial Melting Time of Ultrahigh-Pressure Metamorphic Rocks in the Sulu UHP Terrane: Constrained by Zircon U-Pb Ages, Trace Elements and Lu-Hf Isotope Compositions of Biotite-Bearing Grainite. Acta Petrol. Sin., 25(5): 1039–1055 (in Chinese with English Abstract)
    Liu, F. L., Xu, H. M., Xu, Z. Q., et al., 2006. SHRIMP U-Pb Zircon Dating from Eclogite Lens in Marble, Shuanghe Area, Dabie UHP Terrane: Restriction on the Prograde, UHP and Retrograde Metamorphic Ages. Acta Petrol. Sin., 22(7): 1761–1778 (in Chinese with English Abstract)
    Liu, Q., Jin, Z. M., Zhang, J. F., 2009. An Experimental Study of Dehydration Partial Melting of a Phengite-Bearing Eclogite at 1.5–3.0 GPa. Chin. Sci. Bull., 54(12): 2090–2100
    Malaspina, N., Hermann, J., Scambelluri, M., et al., 2006. Polyphase Inclusions in Garnet-Orthopyroxenite (Dabie Shan, China) as Monitors for Metasomatism and Fluid-Related Trace Element Transfer in Subduction Zone Peridotite. Earth Planet. Sci. Lett., 249: 173–187 doi: 10.1016/j.epsl.2006.07.017
    Massonne, H. J., 2009. Hydration, Dehydration, and Melting of Metamorphosed Granitic and Dioritic Rocks at High- and Ultrahigh-Pressure Conditions. Earth Planet. Sci. Lett., 288: 244–254 doi: 10.1016/j.epsl.2009.09.028
    Nakamura, D., 2003. Stability of Phengite and Biotite in Eclogites and Characteristics of Biotite- or Ortho Pyroxene-Bearing Eclogites. Contrib. Mineral. Petrol., 145: 550–567 doi: 10.1007/s00410-003-0469-7
    Patino Douce, A. E., 2004. Fluid-Absent Melting of Tonalite at 15–32 kbar. J. Petrol., 46(2): 275–290 doi: 10.1093/petrology/egh071
    Perchuk, L. L., Safonov, O. G., Yapaskurt, V. O., et al., 2002. Crystal-Melt Equilibria Involving Potassium-Bearing Clinopyroxene as Indicator of Mantle-Derived Ultra-High-Potassic Liquids: An Analytical Review. Lithos, 60: 89–111 doi: 10.1016/S0024-4937(01)00072-X
    Poli, S., Schmidt, M. W., 1997. The High-Pressure Stability of Hydrous Phase in Orogenic Belts: An Experimental Approach on Eclogite-Forming Processes. Tectonophysics, 273: 169–184 doi: 10.1016/S0040-1951(96)00293-4
    Schmidt, M. W., Vielzeuf, D., Auzanneau, E., 2004. Melting and Dissolution of Subducting Crust at High Pressures: The Key Role of White Mica. Earth Planet. Sci. Lett., 228: 65–84 doi: 10.1016/j.epsl.2004.09.020
    Skjerlie, K. P., Patino Douce, A. E., 2002. The Fluid-Absent Partial Melting of a Zoisite-Bearing Quartz Eclogite from 1.0 to 3.2 GPa: Implication for Melting in Thickened Continental Crust and for Subduction-Zone Processes. J. Petrol., 43(2): 291–314 doi: 10.1093/petrology/43.2.291
    Song, S. G., Yang, J. S., Xu, Z. Q., et al., 2003. Metamorphic Evolution of the Coesite-Bearing Ultrahigh-Pressure Terrane in the North Qaidam, Northern Tibet, NW China. J. Metamorph. Geol., 21: 631–644 doi: 10.1046/j.1525-1314.2003.00469.x
    Stockhert, B., Duyster, J., Trepmann, C., et al., 2011. Microdiamond Daughter Crystals Precipitated from Supercritical COH+Silicate Fluids Included in Garnet, Erzgebirge, Germany. Geology, 29: 391–394
    Stockhert, B., Trepmann, C. A., Massonne, H. J., 2009. Decrepitated UHP fluid Inclusions: About Diverse Phase Assemblages and Extreme Decompression Rates (Erzgebirge, Germany). J. Metamorph. Geol., 27: 673–684 doi: 10.1111/j.1525-1314.2009.00835.x
    Vanderhaeghe, O., Teyssierc, C., 2001. Partial Melting and Flow of Orogens. Tectonophysics, 342: 451–472 doi: 10.1016/S0040-1951(01)00175-5
    Wallis, S., Tsuboi, M., Suzuki, K., et al., 2005. Role of Partial Melting in the Evolution of the Sulu (Eastern China) Ultrahigh-Pressure Terrane. Geology, 33(2): 129–132
    Xia, Q. X., Zheng, Y. F., Zhou, L. G., 2008. Dehydration and Melting during Continental Collision: Constraints from Element and Isotope Geochemistry of Low-T/UHP Granitic Gneiss in the Dabie Orogen. Chem. Geol., 247: 36–65
    Yang, J. J., Godard, G., Smith, D. C., 1998. K-Feldspar in the Coesite Pseudomorphs in an Eclogite from Lanshantou (Eastern China). Eur. J. Mineralog., 10: 969–985
    Yang, X. S., Jin, Z. M., Huenges, E., et al., 2001. Experimental Study on Dehydration Melting of Natural Biotite-Plagioclase Gneiss from High Himalayas and Implications for Himalayan Crust Anatexis. Chin. Sci. Bull., 46(10): 867–872
    Zeng, L. S., Liang, F. H., Asimow, P., et al., 2009. Partial Melting of Deeply Subducted Continental Crust and the Formation of Quartzofeldspathic Polyphase Inclusions in the Sulu UHP Eclogites. Chin. Sci. Bull., 54: 2580–2594
    Zhang, J. F., Jin, Z. M., Green, H. W., et al., 2001. Hydroxyl in Continental Deep Subduction Zone: Evidence from UHP Eclogites of the Dabie Mountains. Chin. Sci. Bull., 46(7): 592–595
    Zhang, R. Y., Liou, J. G., Iizuka, Y., et al., 2009. First Record of K-Cymrite in North Qaidam UHP Eclogite, Western China. Am. Mineral., 94: 222–228
    Zhang, R. Y., Liou, J. G., Zheng, Y. F., et al., 2003. Transition of UHP Eclogites to Gneissic Rocks of Low-Amphibolite Facies during Exhumation: Evidence from the Dabie Terrane, Central China. Lithos, 70: 269–291
    Zhang, Z. M., Shen, K., Sun, W. D., et al., 2008. Fluids in Deeply Subducted Continental Crust: Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China. Geochim. Cosmochim. Acta, 72: 3200–3228
    Zhao, Z. F., Zheng, Y. F., Chen, R. X., et al., 2007. Element Mobility in Mafic and Felsic Ultrahigh-Pressure Metamophic Rocks during Continental Collision. Geochim. Cosmochim. Acta, 71: 5244–5266
    Zheng, Y. F., Chen, R. X., Zhao, Z. F., 2009. Chemical Geodynamics of Continental Subduction-Zone Metamorphism: Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples. Tectonophysics, 475: 327–358
    Zheng, Y. F., Fu, B., Gong, B., et al., 2003. Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth Sci. Rev., 62: 105–161
    Zheng, Y. F., Xia, Q. X., Chen, R. X., et al., 2011. Partial Melting, Fluid Supercriticality and Element Mobility in Ultrahigh-Pressure Metamorphic Rocks during Continental Collision. Earth Sci. Rev., 107: 342–374
    Zong, K. Q., Liu, Y. S., Hu, Z. C., et al., 2010. Melting-Induced Fluid Flow during Exhumation of Gneisses of the Sulu Ultrahigh-Pressure Terrane. Lithos, 120: 490–510
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views(1076) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return