Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 23 Issue 1
Feb 2012
Turn off MathJax
Article Contents
Yuri D Zakharov, Olga P Smyshlyaeva, Alexander M Popov, Tatiana A Velivetskaya, Tamara B Afanasyeva, Kazushige Tanabe, Yasunari Shigeta, Haruyoshi Maeda. Pole to Equator Temperature Gradient for Coniacian Time, Late Cretaceous: Oxygen and Carbon Isotopic Data on the Koryak Upland and Hokkaido. Journal of Earth Science, 2012, 23(1): 19-32. doi: 10.1007/s12583-012-0230-0
Citation: Yuri D Zakharov, Olga P Smyshlyaeva, Alexander M Popov, Tatiana A Velivetskaya, Tamara B Afanasyeva, Kazushige Tanabe, Yasunari Shigeta, Haruyoshi Maeda. Pole to Equator Temperature Gradient for Coniacian Time, Late Cretaceous: Oxygen and Carbon Isotopic Data on the Koryak Upland and Hokkaido. Journal of Earth Science, 2012, 23(1): 19-32. doi: 10.1007/s12583-012-0230-0

Pole to Equator Temperature Gradient for Coniacian Time, Late Cretaceous: Oxygen and Carbon Isotopic Data on the Koryak Upland and Hokkaido

doi: 10.1007/s12583-012-0230-0
Funds:

the International Field Expedition Programme of Japan 10041109

DVO RAN 09-Ⅲ-A-08-402

More Information
  • Corresponding author: Yuri D. Zakharov, yurizakh@mail.ru
  • Received Date: 08 Feb 2011
  • Accepted Date: 02 Jun 2011
  • Publish Date: 01 Feb 2012
  • The purpose of this study was to estimate the Coniacian latitudinal thermal gradient in the Northern Hemisphere. Both hemipelagic (ammonoids) and benthic (brachiopods and bivalves)δ 18O and δ 13C records were used. They originated from Coniacian shallow-water sequences across a wide range of paleolatitudes, from the Koryak upland (northern Kamchatka, Russian Far East) in the north, to Hokkaido (Japan) in the south. Among Coniacian ammonoids, both migrants from Hokkaido living in high latitudes (Kamchatka) and endemic forms dwelling in middle-low latitudes (Hokkaido) indicate seemingly close optimal growth temperatures. Nevertheless, certain differences in climatic conditions, prevailing during high-latitude coldest seasons, undoubtedly provoked growth cessation in some groups of ammonites. Our isotopic study suggests latitudinal temperature changes of only 0.12 ℃ per degree of latitude for the Northern Hemisphere in Coniacian times, while the average annual temperature in North Kamchatka seems about 3.3 ℃ lower than that in Hokkaido.

     

  • loading
  • Alabushev, A. I., 1989a. Morphogenesis of Albian and Early Cenomanian Ammonitids of the North-East USSR. Severo-Vostochnyj Kompleksnyj Nauchno-Issledovatelskij Institut Dalnevostochnogo Otdeleniya Rossijskoj Akademii Nauk, Magadan. 104 (in Russian)
    Alabushev, A. I., 1989b. Scaphitids and Some Other Late Cretaceous Ammonoids of Far East. Severo-Vostochnyj Kompleksnyj Nauchno-Issledovatelskij Institut Akademii Nauk SSSR, Magadan. 56 (in Russian)
    Alcala-Herrera, J. A., Grossman, E. L., Gartner, S., 1992. Nannofossil Diversity and Equitability and Fine-Fraction δ 13C across the Cretaceous/Tertiary Boundary at Walvis Ridge Leg 74, South Atlantic. Marine Micropaleontology, 20: 77–88 doi: 10.1016/0377-8398(92)90010-H
    Anderson, T. F., Arthur, M. A., 1983. Stable Isotopes of Oxygen and Carbon and Their Application to Sedimentologic and Palaeoenvironmental Problems: Stable Isotopes in Sedimentary Geology. Society of Economic Paleontollogists and Mineralogists (SEPM) Short Course, 10: 1–151 http://www.researchgate.net/publication/313576745_Stable_isotopes_of_oxygen_and_carbon_and_their_application_to_sedimentologic_and_paleonvironmental_problems
    Baraboshkin, E. Y., 2007. Early Cretaceous Straits of the Northern Hemisphere. In: Baraboshkin, E. Y., ed., The Straits of the Northern Hemishere during Cretaceous and Palaeogene. Geologicheskij Fakultet Moskovskogo Gosudarstvennogo Universiteta, Moscow. 11–59 (in Russian)
    Barrera, E., 1994. Global Environmental Changes Preceding the Cretaceous-Tertiary Boundary: Early-Late Maastrichtian Transition. Geology, 22(10): 877–880, doi:10.1130/0091-7613(1994)022<0877:GECPTC>2.3.CO;2
    Boersma, A., Shackleton, N. J., 1981. Oxygen and Carbon Isotope Variations and Planktonic-Foraminifer Depth Habitats, Late Cretaceous to Paleocene, Central Pacific, Deep Sea Drilling Project Sites 463 and 465. In: Thiede, J., Vollier, T. L., eds., Initial Reports of the Deep Sea Drilling Project, 62: 513–526
    Bowen, R., 1969. Paleotemperature Analysis. Nedra, Leningrad. 208 (in Russian)
    Clayton, R. N., Stevens, G. R., 1968. Paleotemperatures of New Zealand Belemnites. In: Stable Isotopes in Oceanographic Studies and Paleotemperatures, Tongiorgi (Spoleto, 1965). Pisa, Italy. 199–204
    Coplen, T. B., Kendall, C., Hopple, J., 1983. Comparison of Stable Isotope Reference Samples. Nature, 302(5905): 236–238 doi: 10.1038/302236a0
    Coplen, T. B., Schlanger, S. O., 1973. Oxygen and Carbon Isotope Studies of Carbonate Sediments from Site 167, Magellan Rise, Leg 17. In: Edgar, N. T., Saunders, J. B., eds., Initial Reports of the Deep Sea Drilling Project, 17: 505–509
    Corfield, R. M., Cartlidge, J. E., Premoli-Silva, I., et al., 1991. Oxygen and Carbon Isotope Stratigraphy of the Paleogene and Cretaceous Limestones in the Bottaccione Gorge and the Contessa Highway Sections, Umbria, Italy. Terra Nova, 3: 414–422, doi: 10.1111/j.1365-3121.1991.tb00171.x
    Davis, T. T., Hooper, P. R., 1963. The Determination of the Calcite: Aragonite Ratio in Mollusc Shells by X-Ray Diffraction. Mineralogical Magazine, 33(262): 608–612 doi: 10.1180/minmag.1963.033.262.08
    Douglas, R. G., Savin, S. M., 1975. Oxygen and Carbon Isotope Analyses of Tertiary and Cretaceous Microfossils from Shatsky Rise and Other Sites in the North Pacific Ocean. In: Larson, R. L., Moberly, R., eds., Initial Reports of the Deep Sea Drilling Project, 32: 509–520
    Erbacher, J., 1994. Entwicklung und Palaeoozeanographie Mittelkretazischer Radiolarien der Westlichen Tethys (Italien) und des Nordatlantiks. Tuebinger Micropalaeontologisches Mitteilungen, 12: 1–139 (in German) http://www.researchgate.net/publication/285022225_Entwicklung_und_Palaoozeanographie_mittelkretazischer_Radiolarien_der_westlichen_Tethys_Italien_und_des_Nordatlantiks
    Gale, A. S., 2000. The Cretaceous World. In: Culver, S. J., Rawson, P. F., eds., Biotic Response to Global Change, The Last 145 Million Years. Cambridge University Press, London. 4–19
    Golbert, A. V., 1987. Foundations of Regional Paleoclimatology. Nedra, Moscow. 223 (in Russian)
    Grossman, E. L., Ku, T. L., 1986. Oxygen and Carbon Isotope Fractionation in Biogenic Aragonite: Temperature Effects. Chemical Geology, 59: 59–74 doi: 10.1016/0168-9622(86)90057-6
    Hasegawa, T., Hatsugai, T., 2000. Carbon-Isotope Stratigraphy and Its Chronostratigraphic Significance for the Cretaceous Yezo Group, Kotanbetsu Area, Hokkaido, Japan. Paleontological Research, 4(2): 95–106 http://dspace.lib.kanazawa-u.ac.jp/dspace/bitstream/2297/7108/1/SC-PR-HASEGAWA-T-95.pdf
    Hasegawa, T., Pratt, L. M., Maeda, H., et al., 2003. Upper Cretaceous Stable Carbon Isotope Stratigraphy of Terrestrial Organic Matter from Sakhalin, Russian Far East: A Proxy for the Isotopic Composition of Paleoatmospheric CO2. Palaeoclimatology, Palaeoclimatology, Palaeoecology, 189(1–2): 97–115
    Hay, W., 2010. Modeling Cretaceous Climate. 2010 GSA Genver Annual Meeting (31 Oct. –3 Nov. 2010). Abstracts weith Programs, 42(5): 87–91
    Herman, A. B., 2004. Quantative Paleobotanical Data: Constraits on Late Cretaceous Climates in Eurasia and Alaska. Trudy Geologicheskogo InstitutaRossijuskoj Akademii Nauk, 550: 80–104 (in Russian)
    Herman, A. V., Spicer, R. A., 1996. Paleobotanical Evidence for a Warm Cretaceous Arctic Ocean. Nature, 380(6572): 330–333, doi: 10.1038/380330a0
    Huber, B. T., 1998. Tropical Paradise at the Cretaceous Poles? Science, 282(5397): 2199–2200, doi: 10.1126/science.282.5397.2199
    Huber, B. T., Hodell, D. A., Hamilton, C. P., 1995. Middle-Late Cretaceous Climate of the Southern High Latitudes: Stable Isotopic Evidence for Minimal Equator-to-Pole Thermal Gradients. Geological Society of America Bulletin, 107(10): 1164–1191, doi:10.1130/0016-7606(1995)107<1164:MLCCOT>2.3.CO;2
    Huber, B. T., Norris, R. D., MacLeod, K. G., 2002. Deep-Sea Paleotemperat of Extreme Warmth during the Cretaceous. Geology, 30(2): 123–126, doi: 10.1016/S0096-3003(97)10031-5
    Jenkins, H. C., Gale, A. S., Corfield, R. M., 1994. Carbon-Isotope and Oxygen-Isotope Stratigraphy of the English Chalk and Italian Scaglia and Its Palaeoclimatic Significance. Geological Magazine, 131(1): 1–34 doi: 10.1017/S0016756800010451
    Kadama, K., Maeda, H., Shigeta, Y., et al., 2000. Magnetostratigraphy of Upper Cretaceous Strata in South Sakhalin, Russian Far East. Cretaceous Research, 21(4): 469–478, doi: 10.1006/CRES.2000.0219
    Li, L., Keller, G., 1999. Variability in Late Cretaceous Climate and Deep Waters: Evidence from Stable Isotopes. Marine Geology, 161: 171–190 doi: 10.1016/S0025-3227(99)00078-X
    Lowenstam, H. A., Epstein, S., 1954. Paleotemperatures of the Post-Aptian Cretaceous as Determined by the Oxygen Isotope Method. Journal of Geology, 62: 207–248 doi: 10.1086/626160
    Naidin, D. P., 2007. Epicontinental Seas of North America and Eurasia. Late Cretaceous Meridional Seaway. In: Baraboshkin, E. Y., ed., The Straits of the Northern Hemishere during Cretaceous and Palaeogene. Geologicheskij Fakultet Moskovskogo Gosudarstvennogo Universiteta, Moscow. 60–79 (in Russian)
    Naidin, D. P., Kiyashko, S. I., 1994. Geochemical Characteristics of the Cenomanian-Turonian Boundary Transition Beds on Mountainous Crimea. Paper 2. Carbon and Oxygen Isotopic Composition: Conditions for Organic Carbon Origin. Bulleten Moskovskogo Obschestva Ispytatelei Prirody, Otdel Geologii, 69(2): 59–74 (in Russian) http://www.researchgate.net/publication/292223040_Geochemical_Characteristics_of_the_Boundary_Senomanian-Turonian_Deposits_of_the_Mountainous_Crimea_Pt_1_Lithology_Contents_of_Organic_Carbon_and_Some_Elements
    Pokhialainen, V. P., 1985. Inocrramus Population Structure. In: Pokhialainen, V. P., ed., Mesozoic Bivalve and Cephalopod Mollusks of North-East USSR. Severo-Vostochnyj Kompleksnyj Nauchno-Issledovatelskij Institut, Magadan. 91–103 (in Russian)
    Rawson, P. F., 2000. The Response of Cretaceous Cephalopods to Global Change. In: Culver, S. J., Rawson, P. F., eds., Biotic Response to Global Change, The Last 145 Million Years. Cambridge University Press, London. 97–106
    Savin, S. M., 1977. The History of the Earth's Surface Temperature during the Past 100 Million Years. Annual Review of Earth and Planetary Sciences, 5: 319–355 doi: 10.1146/annurev.ea.05.050177.001535
    Shigeta, Y., Maeda, H., Tanabe, K., et al., 1999. Cretaceous Ammonites from North Kamchatka, Russia. Journal of Geological Society of Japan, 105: 7–8 (in Japanese with English Abstract) http://www.kahaku.go.jp/english/research/researcher/papers/96256.pdf
    Spicer, R. A., 2000. Leaf Physiognomy and Climate Change. In: Culver, S. J., Rawson, P. F., eds., Biotic Response to Global Change, the Last 145 Million Years. Cambridge University Press, London. 244–264
    Spicer, R. A., Ahlberg, A., Herman, A. B., et al., 2002. Palaeoenvironment and Ecology of the Middle Cretaceous Grebenka Flora of Northeastern Asia. Palaeography, Palaeoclimatology, Palaeoecology, 184: 65–105 doi: 10.1016/S0031-0182(02)00247-X
    Teiss, R. V., Naidin, D. P., 1973. Paleotermometry and Oxygen-Isotopic Composition in Organogenic Carbonates. Nauka, Moskva. 255 (in Russian)
    Teiss, R. V., Chupakhin, M. S., Naidin, D. P., 1960. Temperature Determination from the Oxygen-Isotopic Composition of Biogenic Calcite. In: International Geological Congress, 22 Session, 1960. Problem 1: Geochemical Cycles. Gosudarstvennoye Nauchno-Tekhnicheskoye Izdatelstvo Literatury po Geologii i Okhrane Nedr, Moscow. 146–156 (in Russian)
    Toshimitsu, S., 1988. Biostratigraphy of the Upper Cretaceous Santonian Stage in Northwestern Hokkaido. Memoirs Faculty of Science, Kyushu University, Ser. D, Geol. , 26(2): 125–192 doi: 10.5109/1546322
    Toshimitsu, S., Hirano, H., Matsumoto, T., 2000. Data Base and Species Diversity of the Japanese Cretaceous Ammonoids. In: First International Symposium of Carbon Cycle and Biodiversity Change during the Cretaceous. Programs and Abstracts. Waseda University, Tokyo. 54–55
    Veizer, J., 1974. Chemical Diagenesis of Belemnite Shells and Possible Consequences for Palaeotemperature Determinations. Neues Jahrburch für Geologie und Paläontologie, Abhandlungen, 147: 91–111 http://www.researchgate.net/profile/Jan_Veizer/publication/285031869_Chemical_diagenesis_of_belemnite_shells_and_possible_consequences_for_paleotemperature_determinations/links/5775363108ae1b18a7dfdb66/Chemical-diagenesis-of-belemnite-shells-and-possible-consequences-for-paleotemperature-determinations.pdf
    Voigt, S., 2000. Stable Oxygen and Carbon Isotopes from Brachiopods of Southern England and North-Western Germany: Estimation of Upper Turonian Palaeotemperatures. Geological Magazine, 137(6): 687–703 doi: 10.1017/S0016756800004696
    Zachos, J. C., Arthur, M. A., 1986. Paleoceanography of the Cretaceous/Paleogene Boundary Event: Inferences from Stable Isotopic and Other Data. Paleoceanography, 1(1): 5–26 doi: 10.1029/PA001i001p00005
    Zakharov, V. A., Kurushin, N. I., Pokhialaynen, V. P., 1996. Paleobiogeographic Criteria of Terrane Geodynamics of Northestern Asia in Mesozoic. Geologiya i Geophizika, 37(11): 1–22 (in Russian)
    Zakharov, Y. D., Boriskina, N. G., Ignatiev, A. V., et al., 1999. Palaeotemperature Curve for the Late Cretaceous of the Northwestern Circum-Pacific. Cretaceous Research, 20(6): 685–697, doi: 10.1006/cres.1999.0175
    Zakharov, Y.D., Boriskina, N.G., Popov, A.M., 2001. The Reconstruction of Late Paleozoic and Mesozoic Marine Environments from Isotopic Data(Evidence from North Eurasia). Dalnauka, Vladivostok. 112(inRussian)"
    Zakharov, Y. D., Shigeta, Y., Popov, A., et al., 2011. Cretaceous Climatic Oscillations in the Bering Area (Alaska and Koryak Upland): Isotopic and Palaeontological Evidence. Sedimentary Geology, 235(1–2): 122–131, doi: 10.1016/j.sedgeo.2010.03.012
    Zakharov, Y. D., Smyshlyaeva, O. P., Popov, A. M., et al., 2002. Oxygen and Carbon Isotope Composition of the Cretaceous Organogenic Carbonates of the Koryak Upland. Paper 2. Talovka River Basin. Tikhookeanskaya Geologiya, 21(5): 28–40 (in Russian)
    Zakharov, Y. D., Smyshlyeva, O. P., Tanabe, K., et al., 2005. Seasonal Temperature Fluctuations in the High Northern Latitudes during the Cretaceous Period: Isotopic Evidence from Albian and Coniacian Shallow-Water Invertebrates of the Talovka River Basin, Koryak Upland, Russian Far East. Cretaceous Research, 26(1): 113–132, doi: 10.1016/j.cretres.2004.11.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(976) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return