Aleotti, P., Chowdhury, R., 1999. Landslide Hazard Assessment: Summary Review and New Perspectives. Bulletin of Engineering Geology and the Environment, 58(1): 21–44, doi: 10.1007/s100640050066 |
Alexander, D. E., 2008. A Brief Survey of GIS in Mass-Movement Studies, with Reflections on Theory and Methods. Geomorphology, 94(3–4): 261–267, doi: 10.1016/j.geomorph.2006.09.022 |
Anbalagan, R., 1992. Landslide Hazard Evaluation and Zonation Mapping in Mountainous Terrain. Engineering Geology, 32(4): 269–277, doi:10.1016/0013-7952 (92)90053-2 |
Arora, M. K., Das Gupta, A. S., Gupta, R. P., 2004. An Artificial Neural Network Approach for Landslide Hazard Zonation in the Bhagirathi (Ganga) Valley, Himalayas. International Journal of Remote Sensing, 25(3): 559–572, doi: 10.1080/0143116031000156819 |
Bai, S. B., Wang, J., Lu, G. N., et al., 2008. GIS-Based Landslide Susceptibility Mapping with Comparisons of Results from Machine Learning Methods Process versus Logistic Regression in Bailongjiang River Basin, China. Geophysical Research Abstracts, 10: EGU2008-A-06367 http://www.researchgate.net/publication/285716324_GIS-based_landslide_susceptibility_mapping_with_comparisons_of_results_from_machine_learning_methods_process_versus_logistic_regression_in_Bailongjiang_River_Basin_China |
Bai, S. B., Wang, J., Lu, G. N., et al., 2009. GIS-Based and Data-Driven Bivariate Landslide-Susceptibility Mapping in the Three Gorges Area, China. Pedosphere, 19(1): 14–20, doi: 10.1016/S1002-0160(08)60079-X |
Begueria, S., Lorente, A., 2002. Landslide Hazard Mapping by Multivariate Statistics: Comparison of Methods and Case Study in the Spanish Pyrenees. http://en.scientificcommons.org/23860600 |
Bonham-Carter, G. F., 2002. Geographic Information Systems for Geoscientist: Modelling with GIS. In: Merriam, D. F., ed., Computer Methods in the Geosciences. Pergamon/Elsevier, New York. 302–334 |
Brenning, A., 2005. Spatial Prediction Models for Landslide Hazards: Review, Comparison and Evaluation. Natural Hazards and Earth System Sciences, 5(6): 853–862, doi: 10.5194/nhess-5-853-2005 |
Caniani, D., Pascale, S., Sdao, F., et al., 2008. Neural Networks and Landslide Susceptibility: A Case Study of the Urban Area of Potenza. Natural Hazards, 45(1): 55–72, doi: 10.1007/s11069-007-9169-3 |
Carrara, A., Cardinali, M., Guzzetti, F., et al., 1995. GIS Technology in Mapping Landslide Hazard. In: Carrara, A., Guzzetti, F., eds., Geographical Information Systems in Assessing Natural Hazards. Kluwer Academic Publisher, Dordrecht, the Netherlands. 135–175 |
Carrara, A., Guzzetti, F., Cardinali, M., et al., 1999. Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard. Natural Hazards, 20(2–3): 117–135, doi: 10.1023/A:1008097111310 |
Carrara, A., Pike, R. J., 2008. GIS Technology and Models for Assessing Landslide Hazard and Risk. Geomorphology, 94(3–4): 257–260, doi: 10.1016/j.geomorph.2006.07.042 |
Chacon, J., Irigaray, C., Fernandez, T., et al., 2006. Engineering Geology Maps: Landslides and Geographical Information Systems. Bulletin of Engineering Geology and the Environment, 65(4): 341–411, doi: 10.1007/s10064-006-0064-z |
Chauhan, S., Sharma, M., Arora, M. K., et al., 2010. Landslide Susceptibility Zonation through Ratings Derived from Artificial Neural Network. International Journal of Applied Earth Observation and Geoinformation, 12(5): 340–350, doi: 10.1016/j.jag.2010.04.006 |
Choi, J., Oh, H. J., Won, J. S., et al., 2010. Validation of an Artificial Neural Network Model for Landslide Susceptibility Mapping. Environmental Earth Sciences, 60(3): 473–483, doi: 10.1007/s12665-009-0188-0 |
Chung, C. F., Fabbri, A. G., 1999. Probabilistic Prediction Models for Landslide Hazard Mapping. Photogrammetric Engineering and Remote Sensing, 65(12): 1389–1399 http://swbplus.bsz-bw.de/bsz09071573xinh.pdf |
Collison, A. J. C., Anderson, M. G., 1996. Using a Combined Slope Hydrology/Stability Model to Identify Suitable Conditions for Landslide Prevention by Vegetation in the Humid Tropics. Earth Surface Processes and Landforms, 21(8): 737–747, doi:10.1002/(SICI)1096-9837(199608)21:8〈737::AID-ES P674〉3.0.CO;2-F |
Corominas, J., Moya, J., 2008. A Review of Assessing Landslide Frequency for Hazard Zoning Purposes. Engineering Geology, 102(3–4): 193–213, doi: 10.1016/j.enggeo.2008.03.018 |
Dahal, R. K., Hasegawa, S., Nonoumra, A., et al., 2008a. Predictive Modelling of Rainfall-Induced Landslide Hazard in the Lesser Himalaya of Nepal Based on Weights-of-Evidence. Geomorphology, 102(3–4): 496–510, doi: 10.1016/j.geomorph.2008.05.041 |
Dahal, R. K., Hasegawa, S., Nonomura, A., et al., 2008b. GIS-Based Weights-of-Evidence Modelling of Rainfall-Induced Landslides in Small Catchments for Landslide Susceptibility Mapping. Environmental Geology, 54(2): 311–324, doi: 10.1007/s00254-007-0818-3 |
Dai, F. C., Lee, C. F., Li, J., et al., 2001. Assessment of Landslide Susceptibility on the Natural Terrain of Lantau Island, Hong Kong. Environmental Geology, 40(3): 381–391, doi: 10.1007/s002540000163 |
Dai, F. C., Lee, C. F., 2001. Terrain-Based Mapping of Landslide Susceptibility Using a Geographical Information System: A Case Study. Canadian Geotechnical Journal, 38(5): 911–923, doi: 10.1139/cgj-38-5-911 |
Dai, F. C., Lee, C. F., 2002a. Landslide Characteristics and Slope Instability Modeling Using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3–4): 213–228, doi: 10.1016/S0169-555X(01)00087-3 |
Dai, F. C., Lee, C. F., 2002b. Landslides on Natural Terrain: Physical Characteristics and Susceptibility Mapping in Hong Kong. Mountain Research and Development, 22(1): 40–47, doi:10.1659/0276-4741(2002)022[0040:LONT]2.0.CO;2" target="_blank">http://dx.doi.org/ 10.1659/0276-4741(2002)022[0040:LONT]2.0.CO;2 |
Dai, F. C., Lee, C. F., 2003. A Spatiotemporal Probabilistic Modelling of Storm-Induced Shallow Landsliding Using Aerial Photographs and Logistic Regression. Earth Surface Processes and Landforms, 28(5): 527–545, doi: 10.1002/esp.456 |
Dai, F. C., Lee, C. F., Ngai, Y. Y., 2002. Landslide Risk Assessment and Management: An Overview. Engineering Geology, 64(1): 65–87, doi: 10.1016/S0013-7952(01)00093-X |
Dai, F. C., Lee, C. F., Tham, L. G., et al., 2004. Logistic Regression Modelling of Storm-Induced Shallow Landsliding in Time and Space on Natural Terrain of Lantau Island, Hong Kong. Bulletin of Engineering Geology and the Environment, 63(4): 315–327, doi: 10.1007/s10064-004-0245-6 |
Dai, F. C., Xu, C., Yao, X., et al., 2011. Spatial Distribution of Landslides Triggered by the 2008 Ms 8.0 Wenchuan Earthquake, China. Journal of Asian Earth Sciences, 40(4): 883–895, doi: 10.1016/j.jseaes.2010.04.010 |
Dikau, R., Cavallin, A., Jager, S., 1996. Databases and GIS for Landslide Research in Europe. Geomorphology, 15(3–4): 227–239, doi: 10.1016/0169-555X(95)00072-D |
Ercanoglu, M., 2005. Landslide Susceptibility Assessment of SE Bartin (West Black Sea Region, Turkey) by Artificial Neural Networks. Natural Hazards and Earth System Sciences, 5(6): 979–992, doi: 10.5194/nhess-5-979-2005 |
Gallus, D., Abecker, A., Richter, D., 2008. Classification of Landslide Susceptibility in the Development of Early Warning Systems. Symposium on Headway in Spatial Data Handling, Montpellier, France. 55–75 http://agile-online.org/Conference_Paper/CDs/agile_2008/PDF/72_DOC.pdf |
Garcia-Rodriguez, M. J., Malpica, J. A., Benito, B., et al., 2008. Susceptibility Assessment of Earthquake-Triggered Landslides in El Salvador Using Logistic Regression. Geomorphology, 95(3–4): 172–191, doi: 10.1016/j.geomorph.2007.06.001 |
Godt, J. W., Baum, R. L., Savage, W. Z., et al., 2008. Transient Deterministic Shallow Landslide Modeling: Requirements for Susceptibility and Hazard Assessments in a GIS Framework. Engineering Geology, 102(3–4): 214–226, doi: 10.1016/j.enggeo.2008.03.019 |
Gunther, A., Thiel, C., 2009. Combined Rock Slope Stability and Shallow Landslide Susceptibility Assessment of the Jasmund Cliff Area (Rügen Island, Germany). Natural Hazards and Earth System Sciences, 9(3): 687–698, doi: 10.5194/nhess-10-2197-2010 |
Guzzetti, F., Carrara, A., Cardinali, M., et al., 1999. Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy. Geomorphology, 31(1–4): 181–216, doi: 10.1016/S0169-555X(99)00078-1 |
Guzzetti, F., 2003. Landslide Hazard Assessment and Risk Evaluation: Limits and Prospective. In: Proceedings of the 4th EGS Plinius Conference Held at Mallorca, Spain, October 2002. 4 |
Hasegawa, S., Dahal, R. K., Nishimura, T., et al., 2009. DEM-Based Analysis of Earthquake-Induced Shallow Landslide Susceptibility. Geotechnical and Geological Engineering, 27(3): 419–430, doi: 10.1007/s10706-008-9242-z |
Havenith, H. B., Strom, A., Caceres, F., et al., 2006. Analysis of Landslide Susceptibility in the Suusamyr Region, Tien Shan: Statistical and Geotechnical Approach. Landslides, 3(1): 39–50, doi: 10.1007/s10346-005-0005-0 |
He, Y. P., Beighley, R. E., 2008. GIS-Based Regional Landslide Susceptibility Mapping: A Case Study in Southern California. Earth Surface Processes and Landforms, 33(3): 380–393, doi: 10.1002/esp.1562 |
Jadda, M., Shafri, H. Z. M., Mansor, S. B., et al., 2009. Landslide Susceptibility Evaluation and Factor Effect Analysis Using Probabilistic-Frequency Ratio Model. European Journal of Scientific Research, 33(4): 654–668 http://www.researchgate.net/profile/Saied_Pirasteh/publication/286345541_Landslide_susceptibility_evaluation_and_factor_effect_analysis_using_Probabilistic-Frequency_Ratio_model/links/57a12e5208aeb1604832b9ed.pdf |
Kamp, U., Growley, B. J., Khattak, G. A., et al., 2008. GIS-Based Landslide Susceptibility Mapping for the 2005 Kashmir Earthquake Region. Geomorphology, 101(4): 631–642, doi: 10.1016/j.geomorph.2008.03.003 |
Keefer, D. K., 1984. Landslides Caused by Earthquakes. Geological Society of America Bulletin, 95(4): 406–421, doi: 10.1130/0016-7606(1984)95〈406:LCBE〉2.0.CO;2 |
Keefer, D. K., Larsen, M. C., 2007. Assessing Landslide Hazards. Science, 316(5828): 1136–1138, doi: 10.1126/science.1143308 |
Kouli, M., Loupasakis, C., Soupios, P., et al., 2010. Landslide Hazard Zonation in High Risk Areas of Rethymno Prefecture, Crete Island, Greece. Natural Hazards, 52(3): 599–621, doi: 10.1007/s11069-009-9403-2 |
Lee, S., 2004. Application of Likelihood Ratio and Logistic Regression Models to Landslide Susceptibility Mapping Using GIS. Environmental Management, 34(2): 223–232, doi: 10.1007/s00267-003-0077-3 |
Lee, S., Choi, J., 2004. Landslide Susceptibility Mapping Using GIS and the Weight-of-Evidence Model. International Journal of Geographical Information Science, 18(8): 789–814, doi: 10.1080/13658810410001702003 |
Lee, S., Sambath, T., 2006. Landslide Susceptibility Mapping in the Damrei Romel Area, Cambodia Uusing Frequency Ratio and Logistic Regression Models. Environmental Geology, 50(6): 847–855, doi: 10.1007/s00254-006-0256-7 |
Lee, S., Evangelista, D. G., 2006. Earthquake-Induced Landslide-Susceptibility Mapping Using an Artificial Neural Network. Natural Hazards and Earth System Sciences, 6(5): 687–695, doi: 10.5194/nhess-6-687-2006 |
Lee, C. T., 2006. Methodology for Estimation of Earthquake-Induced Landslide Probability and Result Evaluation. Geophysical Research Abstracts, 8: 05759 |
Lee, C. T., Huang, C. C., Lee, J. F., et al., 2008. Statistical Approach to Earthquake-Induced Landslide Susceptibility. Engineering Geology, 100(1–2): 43–58, doi: 10.1016/j.enggeo.2008.03.004 |
Lin, M. L., Tung, C. C., 2003. A GIS-Based Potential Analysis of the Landslides Induced by the Chi-Chi Earthquake. Engineering Geology, 71(1–2): 63–77, doi: 10.1016/S0013-7952(03)00126-1 |
Luzi, L., Pergalani, F., 1999. Slope Instability in Static and Dynamic Conditions for Urban Planning: The 'Oltre Po Pavese' Case History (Regione Lombardia-Italy). Natural Hazards, 20(1): 57–82, doi: 10.1023/A:1008162814578 |
Magliulo, P., Lisio, A. D., Russo, F., et al., 2008. Geomorphology and Landslide Susceptibility Assessment Using GIS and Bivariate Statistics: A Case Study in Southern Italy. Natural Hazards, 47(3): 411–435, doi: 10.1007/s11069-008-9230-x |
Magliulo, P., Lisio, A. D., Russo, F., 2009. Comparison of GIS-Based Methodologies for the Landslide Susceptibility Assessment. Geoinformatica, 13(3): 253–265, doi: 10.1007/s10707-008-0063-2 |
Mavrouli, O., Corominas, J., Wartman, J., 2009. Methodology to Evaluate Rock Slope Stability under Seismic Conditions at Solà de Santa Coloma, Andorra. Natural Hazards and Earth System Sciences, 9(6): 1763–1773, doi: 10.5194/nhess-9-1763-2009 |
Miles, S. B., Ho, C. L., 1999. Rigorous Landslide Hazard Zonation Using Newmark's Method and Stochastic Ground Motion Simulation. Soil Dynamics and Earthquake Engineering, 18(4): 305–323, doi: 10.1016/S0267-7261(98)00048-7 |
Mora, S., Vahrson, W., 1994. Macrozonation Methodology for Landslide Hazard Determination. Bulletin of Association of Engineering Geologists, 31(1): 49–58 http://cidbimena.desastres.hn/docum/crid/Noviembre2005/pdf/eng/doc9195/doc9195-contenido.pdf |
Oh, H. J., Lee, S., 2011. Landslide Susceptibility Mapping on Panaon Island, Philippines Using a Geographic Information System. Environmental Earth Sciences, 62(5): 935–951, doi: 10.1007/s12665-010-0579-2 |
Pachauri, A. K., Gupta, P. V., Chander, R., 1998. Landslide Zoning in a Part of the Garhwal Himalayas. Environmental Geology, 36(3–4): 325–334, doi: 10.1007/s002540050348 |
Pandey, A., Dabral, P. P., Chowdary, V. M., et al., 2008. Landslide Hazard Zonation Using Remote Sensing and GIS: A Case Study of Dikrong River Basin, Arunachal Pradesh, India. Environmental Geology, 54(7): 1517–1529, doi: 10.1007/s00254-007-0933-1 |
Pareek, N., Sharma, M. L., Arora, M. K., 2010. Impact of Seismic Factors on Landslide Susceptibility Zonation: A Case Study in Part of Indian Himalayas. Landslides, 7(2): 191–201, doi: 10.1007/s10346-009-0192-1 |
Patwary, M. A. A., Champati Ray, P. K., Parvaiz, I., 2009. IRS-LISS-III and PAN Data Analysis for Landslide Susceptibility Mapping Using Heuristic Approach in Active Tectonic Region of Himalaya. Journal of the Indian Society of Remote Sensing, 37(7): 493–509, doi: 10.1007/s12524-009-0036-4 |
Pradhan, B., Lee, S., 2008. Utilization of Optical Remote Sensing Data and GIS Tools for Regional Landslide Hazard Analysis Using an Artificial Neural Network Model. Earth Science Frontiers, 14(6): 143–152, doi: 10.1016/S1872-5791(08)60008-1 |
Pradhan, B., Lee, S., 2010a. Regional Landslide Susceptibility Analysis Using Back-Propagation Neural Network Model at Cameron Highland, Malaysia. Landslides, 7(1): 13–30, doi: 10.1007/s10346-009-0183-2 |
Pradhan, B., Lee, S., 2010b. Landslide Susceptibility Assessment and Factor Effect Analysis: Backpropagation Artificial Neural Networks and Their Comparison with Frequency Ratio and Bivariate Logistic Regression Modelling. Environmental Modelling and Software, 25(6): 747–759, doi: 10.1016/j.envsoft.2009.10.016 |
Pradhan, B., Lee, S., 2010c. Delineation of Landslide Hazard Areas on Penang Island, Malaysia, by Using Frequency Ratio, Logistic Regression, and Artificial Neural Network Models. Environmental Earth Sciences, 60(5): 1037–1054, doi: 10.1007/s12665-009-0245-8, doi:10.1007/s12665-009-0245-8 |
Pradhan, B., Singh, R. P., Buchroithner, M. F., 2006. Estimation of Stress and Its Use in Evaluation of Landslide Prone Regions Using Remote Sensing Data. Advances in Space Research, 37(4): 698–709, doi: 10.1016/j.asr.2005.03.137 |
Pradhan, B., Youssef, A. M., Varathrajoo, R., 2010. Approaches for Delineating Landslide Hazard Areas Using Different Training Sites in an Advanced Atificial Neural Network Model. Geo-Spatial Information Science, 13(2): 93–102, doi: 10.1007/s11806-010-0236-7 |
Saha, A. K., Gupta, R. P., Sarkar, I., et al., 2005. An Approach for GIS-Based Statistical Landslide Susceptibility Zonation—With a Case Study in the Himalayas. Landslides, 2(1): 61–69, doi: 10.1007/s10346-004-0039-8 |
Sassa, K., Tsuchiya, S., Ugai, K., et al., 2009. Landslides: A Review of Achievements in the First 5 Years (2004–2009). Landslides, 6(4): 275–286, doi: 10.1007/s10346-009-0172-5 |
Shaban, A., Khawlie, M., Kheir, R. B., et al., 2001. Assessment of Road Instability along a Typical Mountainous Road Using GIS and Aerial Photos, Lebanon-Eastern Mediterranean. Bulletin of Engineering Geology and the Environment, 60(2): 93–101, doi: 10.1007/s100640000092 |
Singh, L. P., van Westen, C. J., Champati Ray, P. K., et al., 2005. Accuracy Assessment of InSAR Derived Input Maps for Landslide Susceptibility Analysis: A Case Study from the Swiss Alps. Landslides, 2(3): 221–228, doi:10.1007/ s10346-005-0059-z |
Temesgen, B., Mohammed, M. U., Korme, T., 2001. Natural Hazard Assessment Using GIS and Remote Sensing Methods, with Particular Reference to the Landslides in the Wondogenet Area, Ethiopia. Physics and Chemistry of the Earth, Part C, 26(9): 665–675, doi: 10.1016/S1464-1917(01)00065-4 |
van Westen, C. J., 2004. Geo-Information Tools for Landslide Risk Assessment: An Overview of Recent Developments. In: Lacerda, W. A., Ehrlich, M., Fontoura, S. A. B., et al., eds., Landslides: Evaluation and Stabilization—Glissement de Terrain: Evaluation et Stabilisation: Proceedings of the 9th International Symposium on Landslides. Rio de Janeiro, Brazil. 39–56 |
van Westen, C. J., Castellanos, E., Kuriakose, S. L., 2008. Spatial Data for Landslide Susceptibility, Hazard, and Vulnerability Assessment: An Overview. Engineering Geology, 102(3–4): 112–131, doi: 10.1016/j.enggeo.2008.03.010 |
van Westen, C. J., Rengers, N., Soeters, R., 2003. Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards, 30(3): 399–419, doi: 10.1023/B:NHAZ.0000007097.42735.9e |
van Westen, C. J., van Asch, T. W. J., Soeters, R., 2006. Landslide Hazard and Risk Zonation—Why Is It still so Difficult? Bulletin of Engineering Geology and the Environment, 65(2): 167–184, doi: 10.1007/s10064-005-0023-0 |
Wang, H. B., Liu, G. J., Xu, W. Y., et al., 2005. GIS-Based Landslide Hazard Assessment: An Overview. Progress in Physical Geography, 29(4): 548–567, doi: 10.1191/0309133305pp462ra |
Wang, H. B., Sassa, K., 2006. Rainfall-Induced Landslide Hazard Assessment Using Artificial Neural Networks. Earth Surface Processes and Landforms, 31(2): 235–247, doi: 10.1002/esp.1236 |
Wu, S. R., Jin, Y. M., Zhang, Y. S., et al., 2004. Investigations and Assessment of the Landslide Hazards of Fengdu County in the Reservoir Region of the Three Gorges Project on the Yangtze River. Environmental Geology, 45(4): 560–566, doi: 10.1007/s00254-003-0911-1 |
Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2009a. Coseismic Rreverse- and Oblique-Slip Surface Faulting Generated by the 2008 Mw 7.9 Wenchuan Earthquake, China. Geology, 37(6): 515–518, doi: 10.1130/G25462A.1 |
Xu, X. W., Yu, G. H., Chen, G. H., et al., 2009b. Parameters of Coseismic Reverse- and Oblique-Slip Surface Ruptures of the 2008 Wenchuan Earthquake, Eastern Tibetan Plateau. Acta Geologica Sinica, 83(4): 673–684, doi: 10.1111/j.1755-6724.2009.00091.x |
Xu, C., Dai, F. C., Chen, J., et al., 2009c. Identification and Analysis of Secondary Geological Hazards Triggered by a Magnitude 8.0 Wenchuan Earthquake. Journal of Remote Sensing, 13(4): 745–762 (in Chinese with English Abstract) |
Yao, X., Dai, F. C., 2006. Support Vector Machine Modeling of Landslide Susceptibility Using a GIS: A Case Study. IAEG 2006, 793 http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3CAE21A977DA5BC3CF685DF7AAA9D926?doi=10.1.1.98.746&rep=rep1&type=pdf |
Yao, X., Tham, L. G., Dai, F. C., 2008. Landslide Susceptibility Mapping Based on Support Vector Machine: A Case Study on Natural Slopes of Hong Kong, China. Geomorphology, 101(4): 572–582, doi: 10.1016/j.geomorph.2008.02.011 |
Yilmaz, I., 2009a. Landslide Susceptibility Mapping Using Frequency Ratio, Logistic Regression, Artificial Neural Networks and Their Comparison: A Case Study from Kat Landslides (Tokat-Turkey). Computers and Geosciences, 35(6): 1125–1138, doi: 10.1016/j.cageo.2008.08.007 |
Yilmaz, I., 2009b. A Case Study from Koyulhisar (Sivas-Turkey) for Landslide Susceptibility Mapping by Artificial Neural Networks. Bulletin of Engineering Geology and the Environment, 68(3): 297–306, doi: 10.1007/s10064-009-0185-2 |
Yilmaz, I., 2010. Comparison of Landslide Susceptibility Mapping Methodologies for Koyulhisar, Turkey: Conditional Probability, Logistic Regression, Artificial Neural Networks, and Support Vector Machine. Environmental Earth Sciences, 61(4): 821–836, doi: 10.1007/s12665-009-0394-9 |