Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 23 Issue 3
Jun 2012
Turn off MathJax
Article Contents
Fangqiang Wei, Hongjuan Yang, Kaiheng Hu, Sergey Chernomorets. Measuring Internal Velocity of Debris Flows by Temporally Correlated Shear Forces. Journal of Earth Science, 2012, 23(3): 373-380. doi: 10.1007/s12583-012-0258-1
Citation: Fangqiang Wei, Hongjuan Yang, Kaiheng Hu, Sergey Chernomorets. Measuring Internal Velocity of Debris Flows by Temporally Correlated Shear Forces. Journal of Earth Science, 2012, 23(3): 373-380. doi: 10.1007/s12583-012-0258-1

Measuring Internal Velocity of Debris Flows by Temporally Correlated Shear Forces

doi: 10.1007/s12583-012-0258-1
Funds:

the National Natural Science Foundation of China  40771026

the NSFC-RFBR Project 40911120089

the NSFC-RFBR Project 08-05-92206 NSFCa

More Information
  • Corresponding author: Fangqiang Wei, fqwei@imde.ac.cn
  • Received Date: 21 Dec 2010
  • Accepted Date: 30 Apr 2011
  • Publish Date: 01 Jun 2012
  • Debris flow is a kind of geological hazard occurring in mountain areas. Its velocity is very important for debris flow dynamics research and designing debris flow control works. However,most of past researches focused on surface velocity and mean velocity of debris flow,while few researches involve its internal velocity because there is no available method for measuring the internal velocity for its destructive power. In this paper,a method of temporally correlated shear forces (TCSF) for measuring the internal velocity of debris flows is proposed. The principle of this method is to calculate the internal velocity of a debris flow using the distance between two detecting sections and the time difference between the two waveforms of shear forces measured at both sections. This measuring method has been tested in 14 lab-based flume experiments.

     

  • loading
  • Arattano, M., Deganutti, A. M., Marchi, L., 1997. Debris Flow Monitoring Activities in an Instrumented Watershed on the Italian Alps. In: Chen, C. L., ed., Proceedings of 1st International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. ASCE, New York. 506–515
    Arattano, M., Grattoni, P., 2000. Using a Fixed Video Camera to Measure Debris-Flow Surface Velocity. In: Wieczorek, G. F., Naeser, N. D., eds., Proceedings of 2nd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. Balkema, Rotterdam. 273–281
    Arattano, M., Marchi, L., 2005. Measurements of Debris Flow Velocity through Cross-Correlation of Instrumentation Data. Natural Hazards and Earth System Sciences, 5: 137–142 doi: 10.5194/nhess-5-137-2005
    Berti, M., Genevois, R., LaHusen, R., et al., 2000. Debris Flow Monitoring in the Acquabona Watershed on the Dolomites (Italian Alps). Phys. Chem. Earth (B), 25(9): 707–715 doi: 10.1016/S1464-1909(00)00090-3
    Drai, R., Sellidj, F., Khelil, M., et al., 2000. Elaboration of Some Signal Processing Algorithms in Ultrasonic Techniques: Application to Materials NDT. Ultrasonics, 38: 503–507 doi: 10.1016/S0041-624X(99)00082-7
    Gagoshidze, M. S., 1970. Debris Flows: Phenomena and Mitigation. Sabchota Sakartvelo, Tbilisi. 385 (in Russian)
    Hanisch, J., Ergenzinger, P., Bonte, M., 2003. Dumpling—An “Intelligent” Boulder for Studying Internal Process of Debris Flows. In: Rickenmann, D., Chen, C. L. eds., Proceedings of 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. Millpress, Rotterdam. 843–849
    Inaba, H., Itakura, Y., Kasahara, M., 2000. Surface Velocity Computation of Debris Flows by Vector Field Measurements.Phys. Chem. Earth (B), 25(9): 741–744 doi: 10.1016/S1464-1909(00)00095-2
    Inaba, H., Uddin, M. S., Itakura, Y., et al., 1997. Surface Velocity Vector Field Measurement of Debris Flow Based on Spatio Temporal Derivative Space Method. In: Chen, C. L., ed., Proceedings of 1st International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. ASCE, New York. 757–766
    Itakura, Y., Kitajima, T., Endo, K., et al., 2000. A New Double Dual-Axes Accelerometer Debris-Flow Detection System. In: Wieczorek, G. F., Naeser, N. D., eds., Proceedings of 2nd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. Balkema, Rotterdam. 319–324
    Itakura, Y., Koga, Y., Takahama, J., et al., 1997. Acoustic Detection Sensor for Debris Flow. In: Chen, C. L., ed., Proceedings of 1st International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. ASCE, New York. 747–756
    Kang, Z. C., Hu, P. H., 1990. Measurements for Kinematic Parameters of Debris Flows in Jiangjia Gully. In: Wu, J. S., Kang, Z. C., Tian, L. Q., et al., eds., Observation Researches on Debris Flows in Jiangjia Gully, Yunnan. Science Press, Beijing. 99–140 (in Chinese)
    Kherhkeulidze, G. I., 1984. Debris Flow Pressure and Methods of Its Determination. In: Proceedings of Trans-Caucasian Regional Scientific Research Institute of Hydrometeorology. Gidrometeoizdat, Moscow. 83(90): 77–112 (in Russian)
    Natishvili, O. G., Tevzadze, V. I., Iordanishvili, Z. S., 1963. Determination of Debris Flow Velocity in Linear Parts of the Channel. In: Proceedings of Georgian Scientific Research Institute of Hydrotechnics and Melioration. Tbilisi. 22: 243–248 (in Russian)
    Pierson, T. C., 1986. Flow Behavior of Channelized Debris Flows, Mount St. Helens, Washington. In: Abrahms, A. D., ed., Hillslope Processes. Allen & Unwin, Boston. 1–4: 269–296
    Prochaska, A. B., Santi, P. M., Higgins, J. D., 2008. Relationships between Size and Velocity for Particles within Debris Flows. Canadian Geotechnical Journal, 45: 1778–1783, doi: 10.1139/T08-088
    Rudell, A., Hu, B., 2001. Does a Warning Signal Accelerate the Processing of Sensory Information? Evidence from Recognition Potential Responses to High and Low Frequency Words. International Journal of Psychophysiology, 41: 31–42 http://www.ncbi.nlm.nih.gov/pubmed/11239695
    Suwa, H., Okunishi, K., Sakai, M., 1993. Motion, Debris Size and Scale of Debris Flows in a Valley on Mount Yajkedake, Japan. In: Hadley, R. F., Mizuyama, T., eds., Strategies for Monitoring, Prediction and Control: Proceedings of the International Symposium on Sediment Problems. IAHS Press, Wallingford. 217: 239–248
    Uddin, M. S., Inaba, H., Itakura, Y., et al., 1998. Estimation of the Surface Velocity of Debris Flow with Computer-Based Spatial Filtering. Applied Optics, 37(26): 6234–6239 doi: 10.1364/AO.37.006234
    Uddin, M. S., Inaba, H., Itakura, Y., et al., 1999. Adaptive Computer-Based Spatial-Filtering Method for More Accurate Estimation of the Surface Velocity of Debris Flow. Applied Optics, 38(32): 6714–6721 doi: 10.1364/AO.38.006714
    Uddin, M. S., Inaba, H., Yoshida, Y., et al., 2001. Large Motion Estimation by Gradient Technique-Application to Debris Flow Velocity Field. Phys. Chem. Earth (C), 26(9): 633–638 http://www.researchgate.net/profile/Mohammad_Uddin16/publication/248403707_Large_motion_estimation_by_gradient_technique_-_Application_to_debris_flow_velocity_field/links/579b45ae08ae80bf6ea33750.pdf
    Zhang, L., Wu, X. L., 2006. On the Application of Cross Correlation Function to Subsample Discrete Time Delay Estimation. Digital Signal Processing, 16: 682–694 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S1051200406001230&originContentFamily=serial&_origin=article&_ts=1414362339&md5=f55c5200a59e402d2e9b7ee20b6e5476
    Zhang, S. C., 1993. A Comprehensive Approach to the Observation and Prevention of Debris Flows in China. Natural Hazards, 7: 1–23 doi: 10.1007%2FBF00595676.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views(423) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return