Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 24 Issue 6
Dec 2013
Turn off MathJax
Article Contents
Zhenhong Yang, Ning Zhang, Jinxiu Dong, Wenchen Xia, Zhengyu Bao. Carbon Oxygen Isotope Analysis and Its Significance of Carbonate in the Zhaogezhuang Section of Early Ordovician in Tangshan, North China. Journal of Earth Science, 2013, 24(6): 918-934. doi: 10.1007/s12583-013-0386-2
Citation: Zhenhong Yang, Ning Zhang, Jinxiu Dong, Wenchen Xia, Zhengyu Bao. Carbon Oxygen Isotope Analysis and Its Significance of Carbonate in the Zhaogezhuang Section of Early Ordovician in Tangshan, North China. Journal of Earth Science, 2013, 24(6): 918-934. doi: 10.1007/s12583-013-0386-2

Carbon Oxygen Isotope Analysis and Its Significance of Carbonate in the Zhaogezhuang Section of Early Ordovician in Tangshan, North China

doi: 10.1007/s12583-013-0386-2

the National Natural Science Foundation of China 41372039

More Information
  • Corresponding author: Ning Zhang,
  • Received Date: 16 May 2013
  • Accepted Date: 08 Oct 2013
  • Publish Date: 01 Dec 2013
  • In the Early Ordovician Zhaogezhuang (赵各庄) Section of Tangshan (唐山), North China, the Yeli (冶里) Formation is composed of an entire third-order sequence, with facies ranging from the inner ramp restricted platform and open marine to the middle and even outer ramps. The Liangjiashan (亮甲山) Formation is dominated by highstand system tracts (HST) with predominantly inner ramp grain-shoal and lagoon facies. Analyzing the carbon and oxygen isotope during the whole-rock carbonate reveals the δ13C values in the Yeli Formation range from −7.11‰−0.76‰ (PDB), with the mean value at −2.98‰, while the δ18O values range of −9.09‰–−4.65‰ with the mean value at −6.12‰. The δ13C values in the Liangjiashan Formation range of −1.15‰−0.3‰, and the mean value of −0.57‰; the δ18O values are −8.76‰–−7.48‰, and the mean value is −8.06‰. The δ13C values in the Yeli Formation decrease, but at the bottom of the Liangjiashan Formation the values increase steadily. In the middle-upper formation, there is an extended fluctuation between 0–−1.00‰. The δ13C trend in the studied section is similar to that of the contemporary sections, except that it has much lower δ13C values and a more negative excursion. The correlation between the δ13C changes and the eustatic events, as well as the sedimentary facies, indicates that in the Tangshan area, the carbon isotope evolution can be attributabled to the processes of the eutrophic sea/oligotrophic sea, the seafloor organism-mediated oxidation in shallow water and the organic reduction after maximum flooding. The changes in the carbon isotope contents were primarily affected by the regional relative sea level changes. Compared to the other coeval data, the Early Ordovician of the Tang shan area is also severely depleted in 18O, with all of the δ18O sample values being below −5‰, except for one sample with a value of -4.65‰. With the ancient seawater having a δ18O value of −5.5‰ (SMOW), it is reasonable to delineate a temperature of less than 37 ℃.


  • loading
  • An, T. X., 1983. Conodonts of Noth China and Its Aajecent Areas. Science Press, Beijing. 1–195
    Brenchley, P. J., Marshall, J. D., Carden, G. A., et al., 1994. Bathymetric and Isotopic Evidence for a Short-Lived Late Ordovician Glaciation in a Greenhouse Period. Geology, 22: 295–298 doi: 10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2
    Brock, T. D., 1985. Life at High Temperatures. Science, 230: 132–138 doi: 10.1126/science.230.4722.132
    Carden, G. A., 1995. Stable Isotopic Changes across the Ordovician-Silurian Boundary [Dissertation]. University of Liverpool, Liverpool
    Chen, X., Bergström, S. M., 2008. Ordovician Study in Hundred Years: From British Series to International Standard. Journal of Stratigraphy, 32(1): 1–14 (in Chinese with English Abstract)
    Chen, X., Rong, J. Y., Wang, X. F., et al., 1993. New Progress of Ordovician Biostratigraphy in China. Journal of Stratigraphy, 17(2): 89–98 (in Chinese)
    Chen, X., Rong, J. Y., Wang, X. F., et al., 1995. Correlation of the Ordovician Rocks of China. International Union of Geological Sciences Publication, 31: 1–104
    Cornée, J. J., Saint Martin, J. P., Conesa, G., et al., 1994. Geometry, Palaeoenvironments and Relative Sea-Level (Accommodation Space) Changes in the Messinian Murdjadjo Carbonate Platform (Oran, Western Algeria): Consequences. Sedimentary Geology, 89(1): 143–158
    Derry, L. A., Brasier, M. D., Corfield, R. M., et al., 1994. Sr and C Isotopic in Lower Cambrian Carbonates from the Siberian Craton: A Paleoenvironmental Record during the Cambrian Explosion. Earth and Planetary Science Letters, 128: 671–681 doi: 10.1016/0012-821X(94)90178-3
    Derry, L. A., Kaufaman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Chang in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochim. Cosmochimica. Acta, 56: 1317–1329 doi: 10.1016/0016-7037(92)90064-P
    Feng, H. Z., Liu, J. R., Shi, G. J., 2000. Records of Carbon and Oxygen Isotopes from the Cambrian and Lower Ordovician Carbonates in Yichang Area, Hubei Province. Geological Journal of China Universities, 6(1): 106–115 (in Chinese with English Abstract)
    Feng, Z. Z., Peng, Y. M., Jin, Z. K., et al., 2003. Lithofacies Palaeography of the Early Ordovician in China. Journal of Palaeogeography, 5(1): 1–16 (in Chinese with English Abstract)
    Feng, Z. Z., 1979. A Preliminary Discussion on the Lower Ordovician Litho-Facies and Paleogeography in North China. Scientia Geologica Sinica, 4: 302–313 (in Chinese with English Abstract)
    Feng, Z. Z., 1986. Early Ordovician Lithofacies and Paleogeography in East North-China Platform. Acta Sedimentologica Sinica, 4(4): 28–40 (in Chinese with English Abstract)
    Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, New York. 1–996
    Gregory, R. T., 1991. Oxygen Isotope History of Seawater Revisited: Timescales for Boundary Event Changes in the Oxygen Isotope Composition of Seawater. In: Taylor H. P., O'Neil, J. R., Kaplan I. R., eds., Stable Isotope Geochemistry: A Tribute to Samuel Epstein. Geochemical Society Special Publication, Geochemical Society of America, St. Louis. 65–76
    Gregory, R. T., Taylor, H. P., 1981. An Oxygen Isotope Profile in a Section of Cretaceous Oceanic Crust, Samail Ophiolite, Oman: Evidence for δ18O Buffering of the Oceans by Deep (> 5 km) Seawater-Hydrothermal Circulation at Mid-Ocean Ridges. Jouranal of Geophysical Research, 86: 2737–2755 doi: 10.1029/JB086iB04p02737
    Hoffman, A., Gruszczynski, M., Malkowski, K., 1991. On the Interrelationship between Temporal Trends in δ13C, δ18O, and δ34S in the World Ocean. The Journal of Geology, 23: 335–370
    Hudson, J. D., Anderson, T. F., 1989. Ocean Temperatures and Isotopic Compositions through Time. R. Soc. Edinburgh Trans. Earth Sci. , 80: 183–192
    Jia, Z. Y., Cai, H., Cai, Z. X., et al., 1997. Sequence Stratigraphy and Sea Level Change of the Ordovician in the Southern Margin of Ordos Region. Earth Science-Journal of China University of Geosciences, 22(5): 491–503 (in Chinese with English Abstract)
    Jin, Z. K., Zou, Y. R., You, W. F., et al., 2002. Ordovician Lithofacies Paleogeography of North Bohai Bay Basin. Acta Sedimentologica Sinica, 20(1): 13–19 (in Chinese with English Abstract)
    Kaljo, D., Hints, L., Martma, T., et al., 2001. Carbon Isotope Stratigraphy in the Latest Ordovician of Estonia. Chemical Geology, 175: 49–59 doi: 10.1016/S0009-2541(00)00363-6
    Kaljo, D., Kiipli, T., Martma, T., 1997. Carbon Isotope Event Markers through the Wenlock-Pridoli Sequence at Ohesaare (Estonia) and Priekule (Latvia). Palaeogeogr., Palaeoclimato., Palaeoecol. , 132: 211–223 doi: 10.1016/S0031-0182(97)00065-5
    Karhu, J., Epstein, S., 1986. The Implication of Oxygen Isotope Records in Coexisting Cherts and Phosphates. Geochim. Cosmochim. Acta, 50: 1745–1756 doi: 10.1016/0016-7037(86)90136-5
    Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-Isotope Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73: 27–49 doi: 10.1016/0301-9268(94)00070-8
    Kaufman, A. J., Konll, A. H., Narbonne, G. M., 1997. Isotopes, Iceages and Terminal Proterozoic Earth History. Preceedings of the National Academy of Sciences, 95: 6600–6605
    Lasemi, Y., 1995. Platform Carbonates of the Upper Jurassic Mozduran Formation in the Kopet Dagh Basin, NE Iran-Facies, Palaeoenvironments and Sequences. Sedimentary Geology, 99(3–4): 151–164
    Li, N., Zhang, N., Dong, N., 2008. Carbonate Microfacies Analysis of Middle Ordovician Majiagou Formation in Tangshan Area, Hebei Province. Geological Science and Technology Information, 27(4): 21–38 (in Chinese with English Abstract)
    Ma, X. P., Han, Z. Z., Wang, Y. H., 1998. The Tremadocian-Early Arenigian (Early Ordovician Sequence Stratigraphy and Lithofacies Paleogeography of North China. Scientia Geologica Sinica, 33(2): 166–179 (in Chinese with English Abstract)
    Marshall, J. D., 1992. Climatic and Oceanographic Isotopic Signals from the Carbonate Rock Record and Their Pre servation. Geol. Mag. , 129: 143–160 doi: 10.1017/S0016756800008244
    Marshall, J. D., Brenchley, P. J., 1998. Oceanic and Atmospheric Changes at the End of the Ordovician: Geochemical Enigmas or the End of a Beautiful Hypothesis? Mineral. Mag., 62A: 951–952
    Marshall, J. D., Brenchley, P. J., Mason, P., et al., 1997. Global Carbon Isotopic Events Associated with Mass Extinction and Glaciation in the Late Ordovician. Palaeogeogr., Palaeoclimato., Palaeoecol. , 132: 195–210 doi: 10.1016/S0031-0182(97)00063-1
    Mei, M. X., 1995. Composite Sea-Level Change Cyclic Sequences of the Carbonates in the Ordovician Liangjiashan Formation on Northern North China Platform, Sedimentary Facies and Palaeogeography. Lithofacies Palaeogeography, 15(5): 33–42 (in Chinese with English Abstract)
    Meng, X. H., Ge, M., Tuker, M. E., 1997. Sequence Stratigraphy, Sea-Level Changes and Depositional Systems in the Cambro-Ordovician of the North China Carbonate Platform. Sedimentary Geology, 114: 189–222 doi: 10.1016/S0037-0738(97)00073-0
    Middleton, P. D., Marshall, J. D., Brenchley, P. J., 1991. Evidence for Isotopic Changes Associated with Late Ordovician Glaciation from Brachiopods and Marine Cements of Central Sweden. Geol. Surv. Canada Paper, 90(9): 313–321
    Milliman, J. D., 1974. Marine Carbonates. Springer, New York. 375
    Muehlenbachs, K., 1998. The Oxygen Isotopic Composition of the Oceans, Sediments and the Seafloor. Chem. Geol. , 145: 263–273 doi: 10.1016/S0009-2541(97)00147-2
    Munnecke, A., Samtleben, C., Bickert, T., 2003. The Ireviken Event in the Lower Silurian of Gotland, Sweden-Relations to Similar Palaeozoic and Proterozoic Events. Palaeogeogr., Palaeoclimato., Palaeoecol. , 195: 99–124 doi: 10.1016/S0031-0182(03)00304-3
    Nicoll, R. S., Nielsen, A. T., Laurie, J. R., et al., 1992. Prelimi-Nary Correlation of Latest Cambrian to Early Ordovician Sea Level Events in Australia and Scandinavia. In: Webby, B. D., Laurie, J. R., Webby, B. D., eds., Rotter-Dam: A Balkema Brookfield. Global perspectives on Ordovician geology, Balkema, Rotterdam. 381–394
    Prokoph, A., Shields, G. A., Veizer, J., 2008. Compilation and Time-Series Analysis of a Marine Carbonate δ18O, δ13C, 87Sr/86Sr and δ34S Database through Earth History. Earth-Science Reviews, 87: 113–133 doi: 10.1016/j.earscirev.2007.12.003
    Qing, H., Veizer, J., 1994. Oxygen and Carbon Isotopic Composition of Ordovician Brachiopods: Implications for Coeval Seawater. Geochim. Cosmochimica. Acta, 58: 4429–4442 doi: 10.1016/0016-7037(94)90345-X
    Rankey, E. C., 2004. On the Interpretation of Shallow Shelf Carbonate Facies and Habitats: How much does Water Depth Matter? Journal of Sedimentary Research, 74: 2–6 doi: 10.1306/071803740002
    Sadooni, F. N., 1993. Stratigraphic Sequence, Microfacies & Petroleum Prospects of the Yamama Formation, Lower Cretaceous, Southern Iraq. American Association of Petroleum Geologists Bulletin, 77: 1971–1988
    Saltzman, M. R., Ripperdan, R. L., Brasier, M. D., et al., 2000. A Global Carbon Isotope Excursion (SPICE) during the Late Cambrian: Relation to Trilobite Extinctions Organic-Matter Burial and Sea Level. Palaeogeogr., Palaeoclimato., Palaeoecol. , 162: 211–223 doi: 10.1016/S0031-0182(00)00128-0
    Samtleben, C., Munnecke, A., Bickert, T., 2000. Development of Facies and C/O-Isotopes in Transects through the Ludlow of Gotland: Evidence for Global and Local Influences on a Shallow-Marine Environment. Facies, 43: 1–38 doi: 10.1007/BF02536983
    Shen, W. Z., Fang, Y. T., 1997. Carbon and Oxygen Isotopic Study across the Cambrian-Ordovician Boundary Strata in East China. Acta Sedimentologica Sinica, 15(4): 38–42 (in Chinese with English Abstract)
    Shields, G. A., Carden, G. A. F., Veizer, J., et al., 2003. Sr, C, and O Isotope Geochemistry of Ordovician Brachiopods: A Major Isotopic Event around the Middle-Late Ordovician Transition. Geochim. Cosmochimica. Acta, 15(11): 2005–2025
    Talbot, M. R., Kelts, K., 1990. Paleolimnological Signatures from Carbon and Oxygen Isotopic Ratios in Carbonates from Organic Carbon-Rich Lacustrine Sediments. In: Katz, B. J., ed., Lacustrine Basin Exploration-A Case Studies and Modern Analogs. AAPG Memoir, 50: 61–76
    Tian, S. G., Zhang, Y. X., 1997. Ordovician Outcrop Sequence-Stratigraphy in Northern North China Platform. Acta Geoscientia Sinica, 18(1): 87–97 (in Chinese with English Abstract)
    Tobin, K. J., Walker, K. R., Steinhauff, D. M., et al., 1996. Fibrous Calcite from the Ordovician of Tennessee: Preservation of Marine Oxygen Isotopic Composition and Its Implications. Sedimentology, 43: 235–251 doi: 10.1046/j.1365-3091.1996.d01-2.x
    Tuker, M. E., 1993. Carbonate Diagenesis and Sequence Stratigraphy. Sedimentology Review, Blackwell Scientific Publications, London. 57–721
    Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161: 59–88 doi: 10.1016/S0009-2541(99)00081-9
    Veizer, J., 1983. Chemical Diagenesis of Carbonates: Theory and Application of Trace Elment Techniques. In: Arthur, M. A., Anderson, T. F., Kaplan, I. R., et al., eds., Stable Isotopes in Sedimentary Geology. Soc. Econom. Palenot. Miner., Short Course, 10: 3.1–3.100
    Veizer, J., Bruckschen, P., Pawellek, F., et al., 1997. Oxygen Isotope Evolution of Phanerozoic Seawater. Palaeogeogr., Palaeoclimato., Palaeoecol. , 132: 159–172 doi: 10.1016/S0031-0182(97)00052-7
    Veizer, J., Fritz, P., Jones, B., 1986. Geochemistry of Brachiopods: Oxygen and Carbon Isotopic Records of Paleozoic Oceans. Geochim. Cosmochimica. Acta, 50: 1679–1696 doi: 10.1016/0016-7037(86)90130-4
    Wadleigh, M. A., Veizer, J., 1992. 18O/16O and 13C/12C in Lower Ordovician Articulate Brachiopods: Implication for the Isotopic Composition of Seawater. Geochim. Cosmochim. Acta, 56: 431–443 doi: 10.1016/0016-7037(92)90143-7
    Wallmann, K., 2001. The Geological Water Cycle and the Evolution of Marine δ18O Values. Geochim. Cosmochim. Acta, 65: 2469–2485 doi: 10.1016/S0016-7037(01)00603-2
    Wang, D. R., Feng, X. J., 2002. Research on Carbon and Oxygen Geochemistry of Lower Paleozoic in North China. Acta Geologica Sinica, 76(3): 400–408 (in Chinese with English Abstract)
    Wang, H. F., 1997. The Sequence and Correlation of the Earliest Ordovician Graptolites from Dayangcha and Its Surrounding Area, Jilin Province, China. Journal of Stratigraphy, 21(4): 293–299 (in Chinese with English Abstract)
    Wang, J. H., Wang, H., Zhou, H. M., et al., 2001. Basement Nonlinear Subsidence of Faulted Lake Basin and Type-II Sequence Formation: Take Nanpu Depression in Jidong Oilfields as an Example. Oil & Gas Geology, 22(3): 203–206 (in Chinese with English Abstract)
    Wang, X. F., 1993. Study on Global Ordovician Chronostratigraphy: Progress and Problems. Advance in Earth Sciences, 8(1): 28–33 (in Chinese with English Abstract)
    Wang, X. F., Chen, X., Chen, X. H., et al., 1996a. Stratigraphic Code of China: Ordovician. Geological Publishing House, Beijing. 1–126 (in Chinese with English Abstract)
    Wang, X. F., Li, Z. M., Chen, J. Q., et al., 1996b. Early Ordovician Sea Level Events in South China and Its Worldwide Correlation. Geology and Mineral Resources of South China, 3: 1–10 (in Chinese with English Abstract)
    Weber, J. N., 1965. The 18O/16O Ratio in Ancient Oceans. Geokhimija, 6: 674–680
    Wilkinson, B. H., Drummond, C. N., Diedrich, N. W., et al., 1999. Poisson Processes of Carbonate Accumulation in Paleozoic and Holocene Platforms. Journal of Sedimentary Research, 69: 338–350 doi: 10.2110/jsr.69.338
    Zhang, J. M., Wang, H. F., Li, G. X., 2000. Sequence Stratigraphic Correlation and Eustatic Events from Latest Cambrian to Early Early Ordovician between North China and Yangtze Platforms, Journal of Stratigraphy, 24: 359–369 (in Chinese with English Abstract)
    Zhou, Z. Y., Chen, J. Y., Lin, X. K., et al., 1983. New Observation of Ordovician in Tangshan Area. Journal of Stratigraphy, 7(1): 19–32 (in Chinese)
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(799) PDF downloads(70) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint