Abriola, L. M., 1989. Modeling Multiphase Migration of Organic Chemicals in Groundwater Systems—A Review and Assessment. Environ. Health Perspect. , 83: 117–143, doi: 10.1289/ehp.8983117 |
Ahlfeld, D. P., Mulvey, J. M., Pinder, G. F., 1988. Contaminated Groundwater Remediation Design Using Simulation, Optimization, and Sensitivity Theory: 2. Analysis of a Field Site. Water Resour. Res. , 24(3): 443–452, doi: 10.1029/WR024i003p00443 |
Baddari, K., Aïfa, T., Djarfour, N., et al., 2009. Application of a Radial Basis Function Artificial Neural Network to Seismic Data Inversion. Computat. Geosci. , 35(12): 2338–2344, doi: 10.1016/j.cageo.2009.03.006 |
Bear, J., 2007. Hydraulics of Groundwater. Dover Publications, New York. 67 http://webpac.lib.tongji.edu.cn/opac/item.php?marc_no=0002527605 |
Carnicer, J. M., 2008. Interpolation and Reconstruction of Curves and Surfaces. Rev. Real Academia de Ciencias. Zaragoza. , 63: 7–40 http://www.unizar.es/acz/05Publicaciones/Revistas/Revista63/p007.pdf |
Chatterjee, K., Fang, K. T., Qin, H., 2006. A Lower Bound for the Centered L 2-Discrepancy on Asymmetric Factorials and Its Application. Metrika, 63(2): 243–255, doi: 10.1007/s00184-005-0015-x |
Chen, S., Cowan, C. F. N., Grant, P. M., 1991. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. Proceedings of IEEE Transactions on Neural Networks, 2: 302–309, doi: 10.1109/72.80341 |
Ciocoiu, I. B., 2002. RBF Networks Training Using a Dual Extended Kalman Filter. Neurocomputing, 48(1–4): 609–622, doi: 10.1016/S0925-2312(01)00631-2 |
Delshad, M., Pope, G. A., Sepehrnoori, K., 1996. A Compositional Simulator for Modeling Surfactant Enhanced Aquifer Remediation, 1 Formulation. J. Contam. Hydrol. , 23(4): 303–327, doi: 10.1016/0169-7722(95)00106-9 |
Fen, C. S., Chan, C., Cheng, H. C., 2009. Assessing a Response Surface-Based Optimization Approach for Soil Vapor Extraction System Design. Journal of Water Resources Planning and Management, 135(3): 198–207, doi: 10.1061/(ASCE)0733-9496(2009)135:3(198) |
Fernandez-Garcia, D., Bolster, D., Sanchez-Vila, X., et al., 2012. A Bayesian Approach to Integrate Temporal Data into Probabilistic Risk Analysis of Monitored NAPL Remediation. Advances in Water Resources, 36: 108–120, doi: 10.1016/j.advwatres.2011.07.001 |
Fetter, C. W., 1999. Contaminant Hydrogeology. Macmillan Publishing Company, New York. 208–262 |
Guan, J., Aral, M., 1999. Optimal Remediation with Well Locations and Pumping Rates Selected as Continuous Decision Variables. J. Hydrol. , 221(1–2): 20–42, doi: 10.1016/S0022-1694(99)00079-7 |
He, L., Huang, G. H., Zeng, G. M., et al., 2008. An Integrated Simulation, Inference, and Optimization Method for Identifying Groundwater Remediation Strategies at Petroleum-Contaminated Aquifers in Western Canada. Water Res. , 42(10–11): 2629–2639, doi: 10.1016/j.watres.2008.01.012 |
Helton, J. C., Davis, F. J., 2003. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems. Reliab. Eng. Syst. Saf. , 81(1): 23–69, doi: 10.1016/S0951-8320(03)00058-9 |
Helton, J. C., Davis, F. J., Johnson, J. D., 2005. A Comparison of Uncertainty and Sensitivity Analysis Results Obtained with Random and Latin Hypercube Sampling. Reliab. Eng. Syst. Saf. , 89(3): 305–330, doi: 10.1016/j.ress.2004.09.006 |
Hora, S. C., Helton, J. C., 2003. A Distribution-Free Test for the Relationship between Model Input and Output when Using Latin Hypercube Sampling. Reliab. Eng. Syst. Saf. , 79(3): 333–339, doi: 10.1016/S0951-8320(02)00240-5 |
Huang, Y., Li, J., Huang, G., et al., 2003. Integrated Simulation-Optimization Approach for Real-Time Dynamic Modeling and Process Control of Surfactant-Enhanced Remediation at Petroleum-Contaminated Sites. Pract. Period Hazard Toxic Radioact. Waste Manag. (ASCE), 7(2): 95–105, doi: 10.1061/(ASCE)1090-025X(2003)7:2(95) |
Johnson, V. M., Rogers, L. L., 2000. Accuracy of Neural Network Approximators in Simulation-Optimization. Journal of Water Resources Planning and Management, 126(2): 48–65, doi: 10.1061/(ASCE)0733-9496(2000)126:2(48) |
Kegl, B., Krzyak, A., Niemann, H., 2000. Radial Basis Function Networks and Complexity Regularization in Function Learning and Classification. In: Proceedings of the 5th International Conference on Pattern Recognition. IEEE, 2: 81–86, doi: 10.1109/ICPR.2000.906022 |
Kuiper, L. K., Illangasekare, T. K., 1998. Numerical Simulation of NAPL Flow in the Subsurface. Computat. Geosci. , 2(3): 171–189 doi: 10.1023/A:1011550219518 |
Liu, L., 2005. Modeling for Surfactant-Enhanced Groundwater Remediation Processes at DNAPLs-Contaminated Sites. J. Environ. Inform. , 5(2): 42–52, doi: 10.3808/jei.200500045 |
Liu, W. H., Medina M. A. Jr., Thomann, W., et al., 2000. Optimization of Intermittent Pumping Schedules for Aquifer Remediation Using a Genetic Algorithm 1. J. Am. Leather Chem. As. , 36(6): 1335–1348, doi: 10.1111/j.1752-1688.2000.tb05730.x |
McKay, M. D., Beckman, R. J., Conover, W., 1979. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21(2): 239–245, doi: 10.2307/1268522 |
Moradkhani, H., Hsu, K., Gupta, H. V., et al., 2004. Improved Streamflow Forecasting Using Self-Organizing Radial Basis Function Artificial Neural Networks. J. Hydrol. , 295(1–4): 246–262, doi: 10.1016/j.jhydrol.2004.03.027 |
NRC, 1994. Alternatives for Groundwater Clean up. National Academy Press, Washington DC. 1–316 http://agris.fao.org/openagris/search.do?recordID=US9519460 |
Olsson, A., Sandberg, G., Dahlblom, O., 2003. On Latin Hypercube Sampling for Structural Reliability Analysis. Struct. Saf. , 25(1): 47–68, doi: 10.1016/S0167-4730(02)00039-5 |
Pan, W., 2003. The Research and Application of the Online Algorithms: [Dissertation]. Jilin University, Changchun. 1–61 (in Chinese with English Abstract) |
Pennell, K. D., Jin, M., Abriola, L. M., et al., 1994. Surfactant Enhanced Remediation of Soil Columns Contaminated by Residual Tetrachloroethylene. J. Contam. Hydrol. , 16(1): 35–53, doi: 10.1016/0169-7722(94)90071-X |
Petelet, M., Iooss, B., Asserin, O., et al., 2010. Latin Hypercube Sampling with Inequality Constraints. Asta. Adv. Stat. Anal. , 94(4): 325–339, doi: 10.1007/s10182-010-0144-z |
Powell, M. J. D., 1987. Radial Basis Functions for Multivariable Interpolation: A Review. Algorithms for Approximation, 143–167 http://www.ams.org/mathscinet-getitem?mr=911311 |
Qin, X. S., Huang, G. H., Chakma, A., et al., 2007. Simulation-Based Process Optimization for Surfactant-Enhanced Aquifer Remediation at Heterogeneous DNAPL-Contaminated Sites. Sci. Total Environ. , 381(1–3): 17–37, doi: 10.1109/ICIII.2009.597 |
Rathfelder, K. M., Abriola, L. M., Taylor, T. P., et al., 2001. Surfactant Enhanced Recovery of Tetrachloroethylene from a Porous Medium Containing Low Permeability Lenses. 2. Numerical Simulation. J. Contam. Hydrol. , 48(3–4): 351–374, doi: 10.1016/S0169-7722(00)00186-8 |
Rogers, L. L., Dowla, F. U., Johnson, V. M., 1995. Optimal Field-Scale Groundwater Remediation Using Neural Networks and the Genetic Algorithm. Environ. Sci. Techno. , 29(5): 1145–1155, doi: 10.1021/es00005a003 |
Schaerlaekens, J., Mertens, J., Van Linden, J., et al., 2006. A Multi-Objective Optimization Framework for Surfactant-Enhanced Remediation of DNAPL Contaminations. J. Contam. Hydrol. , 86(3–4): 176–194, doi: 10.1016/j.jconhyd.2006.03.002 |
Schumaker, M. F., Kramer, D. M., 2011. Comparison of Monte Carlo Simulations of Cytochrome B6f with Experiment Using Latin Hypercube Sampling. Bull. Math. Biol. , 73(9): 2152–2174, doi: 10.1007/s11538-010-9616-2 |
Shen, W., Guo, X., Wu, C., et al., 2010. Forecasting Stock Indices Using Radial Basis Function Neural Networks Optimized by Artificial Fish Swarm Algorithm. Knowl-Based Syst. , 3(24): 378–385, doi: 10.1016/j.knosys.2010.11.001 |
Sreekanth, J., Datta, B., 2010. Multi-Objective Management of Saltwater Intrusion in Coastal Aquifers Using Genetic Programming and Modular Neural Network Based Surrogate Models. Journal of Hydrology, 393(3–4): 245–256, doi: 10.1016/j.jhydrol.2010.08.023 |
Van Camp, M., Walraevens, K., 2009. Pumping Test Interpretation by Combination of Latin Hypercube Parameter Sampling and Analytical Models. Computat. Geosci. , 35(10): 2065–2073, doi: 10.1016/j.cageo.2008.12.011 |
Yan, S., Minsker, B., 2006. Optimal Groundwater Remediation Design Using an Adaptive Neural Network Genetic Algorithm. Water Resour. Res. , 42(5): 1145–1155, doi: 10.1029/2005WR004303 |
Yan, S., Minsker, B., 2011. Applying Dynamic Surrogate Models in Noisy Genetic Algorithms to Optimize Groundwater Remediation Designs. Journal of Water Resources Planning and Management, 137: 284–292, doi: 10.1061/(ASCE)WR.1943-5452.0000106 |
Zhong, L. R., Mayer, A. S., Pope, G. A., 2003. The Effects of Surfactant Formulation on Nonequilibrium NAPL Solubilization. J. Contam. Hydrol. , 60(1–2): 55–75, doi: 10.1016/S0169-7722(02)00063-3 |