Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 4
Aug 2014
Turn off MathJax
Article Contents
Tingting YU, Yiqun GAN, Aiguo ZHOU, Kai YU, Yunde LIU. Investigation of Stable C and Cl isotope effects of trichloroethene and tetrachloroethylene during evaporation at different temperatures. Journal of Earth Science, 2014, 25(4): 735-740. doi: 10.1007/s12583-014-0461-3
Citation: Tingting YU, Yiqun GAN, Aiguo ZHOU, Kai YU, Yunde LIU. Investigation of Stable C and Cl isotope effects of trichloroethene and tetrachloroethylene during evaporation at different temperatures. Journal of Earth Science, 2014, 25(4): 735-740. doi: 10.1007/s12583-014-0461-3

Investigation of Stable C and Cl isotope effects of trichloroethene and tetrachloroethylene during evaporation at different temperatures

doi: 10.1007/s12583-014-0461-3
More Information
  • Corresponding author: Yiqun GAN, yiqungan@cug.edu.cn
  • Received Date: 12 Nov 2013
  • Accepted Date: 28 Mar 2014
  • Publish Date: 01 Aug 2014
  • There are variations of reported isotope enrichment factors of chlorinated organic contaminants in evaporation processes. Trichloroethene (TCE) and tetrachloroethylene (PCE) were chosen to study carbon and chlorine isotope effects during evaporation at different temperatures. Equilibrium vapor-liquid carbon and chlorine isotope effects experiments were also conducted. In the equilibrium liquid-vapor system, the 13C was enriched but 37Cl was depleted in the vapor phase, being consistent with previous results. For evaporation average carbon isotope enrichment factor ɛC were +0.28‰±0.01‰ for TCE and +0.56‰±0.09‰ for PCE at temperature from 20 to 26 ℃. Meanwhile, average chlorine isotope enrichment factor ɛCl were −1.33‰±0.21‰ for TCE and −1.00‰±0.00‰ for PCE. The results indicate that during evaporation the equilibrium isotope effect attenuates the magnitude of carbon isotope fractionation whereas enhances the chlorine isotope effect. Isotope fractionation during evaporation is determined by both equilibrium and kinetic factors. Chlorine isotope fractionation is influenced by the evaporation rate which is linked to temperature. When using stable isotope to investigate the behavior of chlorinated organic contaminants in groundwater with slow biodegradation rate, the isotope fractionation resulted from evaporation should be taken into consideration. Furthermore, the environment conditions such as temperature are also factors to be considered.

     

  • loading
  • Baertschi, P., Kuhn, W., Kuhn, H., 1953. Fractionation of Isotopes by Distillation of Some Organic Substances. Nature, 171(4362): 1018–1020. doi: 10.1038/1711018a0
    Bouchard, D., Hunkeler, D., Gaganis, P., et al., 2008. Carbon Isotope Fractionation during Diffusion and Biodegradation of Petroleum Hydrocarbons in the Unsaturated Zone: Field Experiment at Værlose Airbase, Denmark, and Modeling. Environmental Science & Technology, 42(2): 596–601. doi: 10.1021/es070718f
    Dempster, H. S., Lollar, B. S., Feenstra, S., 1997. Tracing Organic Contaminants in Groundwater: A New Methodology Using Compound-Specific Isotopic Analysis. Environmental Science & Technology, 31(11): 3193–3197. doi: 10.1021/es9701873
    Gan, Y. Q., Yu, T. T., Zhou, A. G., et al., 2013. A Technique for Carbon and Chlorine Isotope Analyses of Chlorinated Aliphatic Hydrocarbons in Groundwater. Journal of Earth Science, 24(2): 274–281. doi: 10.1007/s12583-013-0328-z
    Harrington, R. R., Poulson, S. R., Drever, J. I., et al., 1999. Carbon Isotope Systematics of Monoaromatic Hydrocarbons: Vaporization and Adsorption Experiments. Organic Geochemistry, 30(8A): 765–775. doi: 10.1016/S0146-6380(99)00059-5
    Huang, L., Sturchio, N. C., Abrajano Jr, T., et al., 1999. Carbon and Chlorine Isotope Fractionation of Chlorinated Aliphatic Hydrocarbons by Evaporation. Organic Geochemistry, 30(8A): 777–785. doi: 10.1016/S0146-6380(99)00060-1
    Hunkeler, D., Aravena, R., Shouakar-Stash, O., et al., 2011. Carbon and Chlorine Isotope Ratios of Chlorinated Ethenes Migrating through a Thick Unsaturated Zone of a Sandy Aquifer. Environmental Science & Technology, 45(19): 8247–8253. doi: 10.1021/Es201415k
    Hunkeler, D., Chollet, N., Pittet, X., et al., 2004. Effect of Source Variability and Transport Processes on Carbon Isotope Ratios of TCE and PCE in Two Sandy Aquifers. Journal of Contaminant Hydrology, 74(1–4): 265–282. doi: 10.1016/j.jconhyd.2004.03.003
    Jeannottat, S., Hunkeler, D., 2012. Chlorine and Carbon Isotopes Fractionation during Volatilization and Diffusive Transport of Trichloroethene in the Unsaturated Zone. Environmental Science & Technology, 46(6): 3169–3176. doi: 10.1021/Es203547p
    Jendrzejewski, N., Eggenkamp, H. G. M., Coleman, M. L., 1997. Sequential Determination of Chlorine and Carbon Isotopic Composition in Single Microliter Samples of Chlorinated Solvent. Analytical Chemistry, 69(20): 4259–4266. doi: 10.1021/ac970447z
    Kopinke, F. D., Georgi, A., Voskamp, M., et al., 2005. Carbon Isotope Fractionation of Organic Contaminants due to Retardation on Humic Substances: Implications for Natural Attenuation Studies in Aquifers. Environmental Science & Technology, 39(16): 6052–6062. doi: 10.1021/es040096n
    Meckenstock, R. U., Morasch, B., Warthmann, R., et al., 1999. 13C/12C Isotope Fractionation of Aromatic Hydrocarbons during Microbial Degradation. Environmental Microbiology, 1(5): 409–414. doi: 10.1046/j.1462-2920.1999.00050.x
    Numata, M., Nakamura, N., Koshikawa, H., et al., 2002. Chlorine Isotope Fractionation during Reductive Dechlorination of Chlorinated Ethenes by Anaerobic Bacteria. Environmental Science & Technology, 36(20): 4389–4394. doi: 10.1021/es025547n
    Poulson, S. R., Drever, J. I., 1999. Stable Isotope (C, Cl, and H) Fractionation during Vaporization of Trichloroethylene. Environmental Science & Technology, 33(20): 3689–3694. doi: 10.1021/es990406f
    Schuth, C., Taubald, H., Bolano, N., et al., 2003. Carbon and Hydrogen Isotope Effects during Sorption of Organic Contaminants on Carbonaceous Materials. Journal of Contaminant Hydrology, 64(3—4): 269–281. doi: 10.1016/S0169-7722(02)00216-4
    Slater, G. F., Ahad, J. M. E., Lollar, B. S., et al., 2000. Carbon Isotope Effects Resulting from Equilibrium Sorption of Dissolved VOCs. Analytical Chemistry, 72(22): 5669–5672. doi: 10.1021/ac000691h
    Slater, G. F., Dempster, H. S., Lollar, B. S., et al., 1999. Headspace Analysis: A New Application for Isotopic Characterization of Dissolved Organic Contaminants. Environmental Science & Technology, 33(1): 190–194. doi: 10.1021/es9803254
    Sturchio, N. C., Clausen, J. L., Heraty, L. J., et al., 1998. Chlorine Isotope Investigation of Natural Attenuation of Trichloroethene in an Aerobic Aquifer. Environmental Science & Technology, 32(20): 3037–3042. doi: 10.1021/es9802605
    van Warmerdam, E. M., Frape, S. K., Aravena, R., et al., 1995. Stable Chlorine and Carbon Isotope Measurements of Selected Chlorinated Organic Solvents. Applied Geochemistry, 10(5): 547–552. doi: 10.1016/0883-2927(95)00025-9
    Wang, Y., Huang, Y. S., 2003. Hydrogen Isotopic Fractionation of Petroleum Hydrocarbons during Vaporization: Implications for Assessing Artificial and Natural Remediation of Petroleum Contamination. Applied Geochemistry, 18(10): 1641–1651. doi: 10.1016/S0883-2927(03)00076-3
    Ward, J. A. M., Ahad, J. M. E., Lacrampe-Couloume, G., et al., 2000. Hydrogen Isotope Fractionation during Methanogenic Degradation of Toluene: Potential for Direct Verification of Bioremediation. Environmental Science & Technology, 34(21): 4577–4581. doi: 10.1021/es001128j
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(792) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return