Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 5
Oct 2014
Turn off MathJax
Article Contents
Awni T Batayneh, Taisser Zumlot, Habes Ghrefat, Mahmud M El-Waheidi, Yousef Nazzal. The Use of Ground Penetrating Radar for Mapping Rock Stratigraphy and Tectonics: Implications for Geotechnical Engineering. Journal of Earth Science, 2014, 25(5): 895-900. doi: 10.1007/s12583-014-0475-x
Citation: Awni T Batayneh, Taisser Zumlot, Habes Ghrefat, Mahmud M El-Waheidi, Yousef Nazzal. The Use of Ground Penetrating Radar for Mapping Rock Stratigraphy and Tectonics: Implications for Geotechnical Engineering. Journal of Earth Science, 2014, 25(5): 895-900. doi: 10.1007/s12583-014-0475-x

The Use of Ground Penetrating Radar for Mapping Rock Stratigraphy and Tectonics: Implications for Geotechnical Engineering

doi: 10.1007/s12583-014-0475-x
More Information
  • Corresponding author: Awni T Batayneh, awni_batayneh@yahoo.com
  • Received Date: 18 Dec 2013
  • Accepted Date: 15 Jul 2014
  • Publish Date: 01 Oct 2014
  • This paper presents results from ground penetrating radar surveys using the SIR-10B GPR instrument (manufactured by Geophysical Survey System Inc., USA), with 400 MHz monostatic antenna (model 5 103). Survey was made over 3 excavation levels along the highway section at the Ras en Naqab escarpment area, Southwest Jordan. A total of 217 m along 4 profiles were covered in the winter of 2012. The objectives of the study are (i) to evaluate the resolution of the GPR technique in the field for detecting and locating anomalies caused by subsurface structures like cavities, fractures and faults, and (ii) to describe stratigraphic nomenclature of the subsurface rocks of the area. 2D interpretation of the obtained data and the geological information demonstrate a strong correlation between the GPR anomalies and the subsurface geology. Based upon the lateral and vertical velocity changes with depth, the thickness and orientation of the subsurface layers are outlined. Analysis of the exposed section shows good agreement between the estimated thicknesses of lithostratigraphic units and the quantitative assessment of the radar waves velocity inferred from GPR data.

     

  • loading
  • Annan, A. P., Bauman, P., Greenhouse, J., et al., 1991. Geophysics and DNAPLs. Groundwater Management, 5: 963–977 http://www.researchgate.net/publication/289204350_Geophysics_and_DNAPLs
    Arcone, S., Lawson, D. L., Delaney, A. J., et al., 1998. Ground-Penetrating Radar Reflection Profiling of Groundwater and Bedrock in an Area of Discontinuous Permafrost. Geophysics, 63: 1573–1584 doi: 10.1190/1.1444454
    Barjous, M., 1995. Geological Map of Petra and Wadi Al Lahyana. Map Sheet Nos. 3050 I and 3050 IV. Geological Mapping Division, Natural Resources Authority, Jordan
    Barnhardt, W., Kayen, R., 2000. Radar Structure of Earthquake-Induced, Coastal Landslides in Anchorage, Alaska. Environmental Geosciences, 7: 38–45 doi: 10.1046/j.1526-0984.2000.71007.x
    Batayneh, A., Abueladas, A., Moumani, K., 2002. Use of Ground-Penetrating Radar for Assessment of Potential Sinkhole Conditions: An Example from Ghor al Haditha Area, Jordan. Environmental Geology, 41: 977–983 doi: 10.1007/s00254-001-0477-8
    Batayneh, A. T., Al-Diabat, A. A., 2002. Application of 2D Electrical Tomography Technique for Investigating Landslides along Amman-Dead Sea Highway, Jordan. Environmental Geology, 42: 399–403 doi: 10.1007/s00254-002-0543-x
    Batayneh, A. T., Al-Zoubi, A. S., 2000. Detection of a Solution Cavity Adjacent to a Highway in Southwest Jordan Using Electrical Resistivity Methods. Journal of Environmental and Engineering Geophysics, 5: 25–30 doi: 10.4133/JEEG5.4.25
    Batayneh, A. T., Barjous, M. O., 2003. A Case Study of Dipole-Dipole Resistivity for Geotechnical Engineering from the Ras en Naqab Area, South Jordan. Journal of Environmental and Engineering Geophysics, 8: 31–38 doi: 10.4133/JEEG8.1.31
    Batayneh, A. T., Haddadin, G. S., Toubasi, U. M., 1999. Using the Head-on Resistivity Method for Shallow Rock Fracture Investigations, Ajlun, Jordan. Journal of Environmental and Engineering Geophysics, 4: 179–184 doi: 10.4133/JEEG4.3.179
    Benson, A., 1995. Application of Ground Penetrating Radar in Assessing Some Geological Hazards: Examples of Groundwater Contamination, Faults, Cavities. Journal of Applied Geophysics, 33: 177–193 doi: 10.1016/0926-9851(95)90040-3
    Beres, M., Haeni, F., 1991. Application of Ground-Penetrating Radar Methods in Hydrogeologic Studies. Ground Water, 29: 375–386 doi: 10.1111/j.1745-6584.1991.tb00528.x
    Birken, R., Versteeg, R., 2000. Use of Four-Dimensional Ground Penetrating Radar and Advanced Visualization Methods to Determine Subsurface Fluid Migration. Journal of Applied Geophysics, 43: 215–226 doi: 10.1016/S0926-9851(99)00060-9
    Bonomo, N., Cedrina, L., Osella, A., et al., 2009. GPR Prospecting in a Prehispanic Village, NW Argentina. Journal of Applied Geophysics, 67: 80–87 doi: 10.1016/j.jappgeo.2008.09.013
    Buynevich, I. V., Fitzgerald, D. M., 2003. High-Resolution Subsurface (GPR) Imaging and Sedimentology of Coastal Ponds, Maine, USA: Implications for Holocene Back-Barrier Evolution. Journal of Sedimentary Research, 73: 559–571 doi: 10.1306/121802730559
    Cai, J., McMechan, G., Fisher, M., 1996. Application of Ground-Penetrating Radar to Investigation of Near-Surface Fault Properties in the San Francisco Bay Region. Bulletin of Seismological Society of America, 86: 1459–1470
    Carrozzo, M. T., Leucci, G., Negri, S., et al., 2003. GPR Survey to Understand the Stratigraphy at the Roman Ships Archaeological Site (Pisa, Italy). Archaeological Prospection, 10: 57–72 doi: 10.1002/arp.204
    Chu, D., Gordon, R. G., 1998. Current Plate Motions across the Red Sea. Geophysical Journal International, 135: 313–328 doi: 10.1046/j.1365-246X.1998.00658.x
    Daniels, D. J., 2004. Ground Penetrating Radar. 2nd Edition, The Institute of Electrical Engineers, London. 760
    Daniels, J., Roberts, R., Vendl, M., 1995. Ground Penetrating Radar for the Detection of Liquid Contaminants. Journal of Applied Geophysics, 33: 195–207 doi: 10.1016/0926-9851(95)90041-1
    Diabat, A., 2002. Strain Analysis of the Cretaceous Rocks in the Eastern Margin of the Dead Sea Transform, Jordan. Dirasat, 29: 159–172 http://www.researchgate.net/profile/Abdullah_Diabat/publication/264554715_Paleostress_analysis_of_the_Cretaceous_rocks_in_the_eastern_margin_of_the_Dead_Sea_transform_Jordan/links/00b7d53637d323fd31000000.pdf
    Diabat, A. A., Atallah, M., Salih, M. R., 2004. Paleostress Analysis of the Cretaceous Rocks in the Eastern Margin of the Dead Sea Transform. Journal of African Earth Sciences, 38: 449–460 doi: 10.1016/j.jafrearsci.2004.04.002
    Denizman, C., Brevik, E. C., Doolittle, J., 2010. Ground-Penetrating Radar Investigation of a Rapidly Developed Small Island in a Lake in Southern Georgia, USA. Journal of Cave and Karst Studies, 72: 94–99 doi: 10.4311/jcks2008es0060
    Endres, A. L., Clement, W. P., Rudolph, D. L., 2000. Ground Penetrating Radar Imaging of an Aquifer during a Pumping Test. Ground Water, 38: 566–76 doi: 10.1111/j.1745-6584.2000.tb00249.x
    Imai, T., Sakayama, T., Kanemori, T., 1987. Use of Ground-Probing Radar and Resistivity Surveys for Archaeological Investigations. Geophysics, 52: 137–150 doi: 10.1190/1.1442290
    Joffe, S., Garfunkel, Z., 1987. Plate Kinematics of the Circum Red Sea. Are Evaluation. Tectonophysics, 141: 5–22 doi: 10.1016/0040-1951(87)90171-5
    Klinger, Y., Avouac, J. P., Abou Karaki, N., et al., 2000. Slip Rate on the Dead Sea Transform Fault in Northern Araba Valley. Geophysical Journal International, 142: 755–768 doi: 10.1046/j.1365-246x.2000.00165.x
    Knight, R., 2001. Ground Penetrating Radar for Environmental Applications. Annual Review of Earth and Planetary Sciences, 29: 229–255 doi: 10.1146/annurev.earth.29.1.229
    Liner, C., Liner, J., 1997. Application of GPR to a Site Investigation Involving Shallow Faults. Leading Edge, 16: 1649–1651 doi: 10.1190/1.1437545
    McMechan, G. A., Louks, R., Zeng, X., et al., 1998. Ground Penetrating Radar Imaging of a Collapsed Paleocave System in the Ellenburger Dolomite, Central Texas. Journal of Applied Geophysics, 39: 1–10 doi: 10.1016/S0926-9851(98)00004-4
    Mulder, W. A., ten Kroode, A. P. E., 2002. Automatic Velocity Analysis by Differential Semblance Optimization. Geophysics, 67: 1184–1191 doi: 10.1190/1.1500380
    Nobes, D. C., Ferguson, R. J., Brierley, G. J., 2001. Ground-Penetrating Radar and Sedimentological Analysis of Holocene Floodplains: Insight from the Tuross Valley, New South Wales. Australian Journal of Earth Sciences, 48: 347–355 doi: 10.1046/j.1440-0952.2001.00864.x
    Saarenketo, T., Scullion, T., 2000. Road Evaluation with Ground Penetrating Radar. Journal of Applied Geophysics, 43: 119–138 doi: 10.1016/S0926-9851(99)00052-X
    Shapira, A., Hofstetter, A., 1993. Source Parameters and Scaling Relationships of Earthquakes in Israel. Tectonophysics, 217: 217–226 doi: 10.1016/0040-1951(93)90005-5
    Smith, D., 1986. Application of the Pole-Dipole Resistivity Technique to the Detection of Solution Cavities beneath Highways. Geophysics, 51: 833–837 doi: 10.1190/1.1442135
    Taner, M. T., Koehler, F., 1969. Velocity Spectra-Digital Computer Derivation and Applications of Velocity Functions. Geophysics, 34: 859–881 doi: 10.1190/1.1440058
    van Leeuwen, T., Mulder, W. A., 2008. Velocity Analysis Based on Data Correlation. Geophysical Prospecting, 56: 791–803 doi: 10.1111/j.1365-2478.2008.00704.x
    van Overmeeren, R., 1998. Radar Facies of Unconsolidated Sediments in the Netherlands: A Radar Stratigraphy Interpretation Method for Hydrogeology. Journal of Applied Geophysics, 40: 1–18 doi: 10.1016/S0926-9851(97)00033-5
    Vaughan, C., 1986. Ground-Penetrating Radar Surveys Used in Archaeological Investigations. Geophysics, 51: 595–604 doi: 10.1190/1.1442114
    Wolf, L., Collier, J., Tuttle, M., et al., 1998. Geophysical Reconnaissance of Earthquake-Induced Liquefaction Features in the New Madrid Seismic Zone. Journal of Applied Geophysics, 39: 121–129 doi: 10.1016/S0926-9851(98)00016-0
    Yilmaz, O., 1987. Seismic Data Processing. Society of Exploration Geophysics, Tulsa. 525
    Zain Eldeen, U., Delvaux, D., Jacobs, P., 2002. Tectonic Evolution in the Wadi Araba Segment of the Dead Sea Rift, Southwest Jordan. EGU Stephan Mueller Special Publication Series, 2: 63–81 doi: 10.5194/smsps-2-63-2002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(606) PDF downloads(214) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return