2014, 25(5): 861-870.
doi: 10.1007/s12583-014-0473-z
Abstract:
After the Wenchuan MS 8.0 Earthquake, which occurred on May 12, 2008, in Sichuan Province, China, we conducted a series of hydraulic fracturing stress measurements in three 200 m deep boreholes (ZK01, ZK02, and ZK03) drilled in Beichuan and Jiangyou regions near the northeastern segment of Longmenshan fault belt in 2009. These measurements revealed the near-surface stress field in the fault region one year after the Wenchuan MS 8.0 Earthquake. However, the lack of the stress measurements before the earthquake in the same region makes it difficult to understand variations of the in situ stress field (near-surface) by comparative analysis. In order to determine the unknown horizontal principal stresses before the earthquake in Beichuan and Jiangyou regions, the following research method was tentatively applied. Firstly, we calculate the static co-seismic stress field by linear elastic finite element numerical simulation with ANSYS, based on the co-seismic static displacement generated by the Wenchuan MS 8.0 Earthquake along the central Longmenshan fault plane in Beichuan and Jiangyou. Secondly, combining hydraulic fracturing measurements (after the earthquake) with the co-seismic stress (simulation), the magnitudes and orientations of horizontal principal stresses before the earthquake were calculated. Finally, the variation of the in situ stress (near-surface) in Beichuan and Jinagyou, both before and after the Wenchuan MS 8.0 Earthquake, were obtained by comparative analysis. To do this the magnitude of SHmax was decreased on average by 13.01 and 6.54 MPa after the earthquake in ZK02 and ZK03, respectively and the magnitude of SHmin was decreased by 2.54 and 5.29 MPa in ZK02 and ZK03, respectively. Following the earthquake, the average direction of SHmax rotated anticlockwise by 42.5°.