Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 5
Oct 2014
Turn off MathJax
Article Contents
Shuo Zhao, Wenliang Xu, Wei Wang, Jie Tang, Yihan Zhang. Geochronology and Geochemistry of Middle–Late Ordovician Granites and Gabbros in the Erguna Region, NE China: Implications for the Tectonic Evolution of the Erguna Massif. Journal of Earth Science, 2014, 25(5): 841-853. doi: 10.1007/s12583-014-0476-9
Citation: Shuo Zhao, Wenliang Xu, Wei Wang, Jie Tang, Yihan Zhang. Geochronology and Geochemistry of Middle–Late Ordovician Granites and Gabbros in the Erguna Region, NE China: Implications for the Tectonic Evolution of the Erguna Massif. Journal of Earth Science, 2014, 25(5): 841-853. doi: 10.1007/s12583-014-0476-9

Geochronology and Geochemistry of Middle–Late Ordovician Granites and Gabbros in the Erguna Region, NE China: Implications for the Tectonic Evolution of the Erguna Massif

doi: 10.1007/s12583-014-0476-9
More Information
  • Corresponding author: Wenliang Xu,
  • Received Date: 18 Feb 2013
  • Accepted Date: 21 Jun 2014
  • Publish Date: 01 Oct 2014
  • Zircon U-Pb ages,Hf isotope data and whole-rock major and trace element data for the Middle to Late Ordovician gabbros and granites in the Erguna Massif,NE China were presented in this paper. The petrogenesis of these rocks and the Early Paleozoic tectonic evolution of the massif were discussed. Zircons from the granites and gabbros are of magmatic origin based on their cathodoluminescence (CL) images. The 206Pb/238U ages obtained from 20 spots on zircons from the granites range from 446±9 to 464±10 Ma,yielding a weighted mean age of 455±10 Ma; and 16 spots on zircons from the gabbros range from 465±10 to 466±7 Ma,yielding a weighted mean age of 465±2 Ma. Chemically,the Late Ordovician granites in the Erguna Massif are weakly peraluminous and similar to A-type granites. The granites and gabbros are all enriched in light rare earth elements and large ion lithophile elements (e.g.,Rb,K),and depleted in heavy rare earth elements and high field strength elements (e.g.,Nb,Ta,and Ti); they all exhibit marked negative Eu anomalies. Their zircon ɛHf(t) values range mainly from +1.86 to +6.21 (for the granites) and +1.39 to +3.89 (for the gabbros),except for one spot with a value of −0.27 (for a gabbro). The TDM1 ages for the gabbros and TDM2 ages for the granites vary from 928 to 1 091 Ma and from 1 287 to 1 675 Ma,respectively. It is concluded that the primary magma of the granites could have been derived by partial melting of Mesoproterozoic newly accreted crustal material,whereas the primary magma of the gabbros originated by partial melting of a depleted mantle wedge that had been metasomatized by fluids derived from a subducted slab. These Middle-Late Ordovician granites and gabbros constitute a typical bimodal igneous rock association,implying an extensional environment that was probably related to the post-collisional development of the Erguna and Xing'an massifs in the early Early Paleozoic.


  • loading
  • Badarch, G., Cunningham, W. D., Windley, B. F., 2002. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87–110. doi: 10.1016/S1367-9120(02)00017-2
    Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248–260. doi: 10.1007/s004100050278
    Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63–114
    Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641–644. doi:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
    Eiler, J. M., Grawford, A. J., Elliott, T. R., et al., 2000. Oxygen Isotope Geochemistry of Oceanic Arc Lavas. Petrology, 41(2): 229–256, doi: 10.1093/petrology/41.2.229
    Frey, F. A., Prinz, M., 1978. Ultramafic Inclusions from San Carlos, Arizona: Petrologic and Geochemical Data Bearing on Their Petrogenesis. Earth and Planetary Science Letters, 38(1): 129–176. doi: 10.1016/0012-821X(78)90130-9
    Ge, W. C., Sui, Z. M., Wu, F. Y., et al., 2007. Zircon U-Pb Ages, Hf Isotopic Characteristics and Their Implications of the Early Paleozoic Granites in the Northwestern Da Hinggan Mts, Northeastern China. Acta Petrologica Sinica, 23: 423–440 (in Chinese with English Abstract)
    Ge, W. C., Wu, F. Y., Zhou, C. Y., et al., 2005. Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Erguna Block in the Northern Part of the Da Hinggan Range. Chinese Science Bulletin, 50: 2097–2105 (in Chinese) doi: 10.1360/982005-207
    Gill, J. B., 1981. Orogenic Andesites and Plate Tectonics. Springer Verlag, New York. 385
    Grove, T. L., Donnelly-Nolan, M., 1986. The Evolution of Young Sillic Lavas at Medicine Lake Volcano, California: Implications for the Origin of Compositional Gaps in Calc-alkaline Series Lavas. Contributions to Mineralogy and Petrology, 92(3): 281–302. doi: 10.1007/BF00572157
    Grove, T. L., Elkins Tanton, L. T., Parman, S. W., et al., 2003. Fractional Crystallization and Mantle Melting Controls on Calc-Alkaline Differentiation Trends. Contributions to Mineralogy and Petrology, 145(5): 515–533. doi: 10.1007/s00410-003-0448-z
    HBGMR (Heilongjiang Bureau of Geology and Mineral Resources), 1993. Regional Geology of Heilongjiang Province. Geological Publishing House, Beijing. 347–418 (in Chinese with English Abstract)
    Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008a. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093–1101. doi: 10.1039/B804760J
    Hu, Z. C., Liu, Y. S., Gao, S., et al., 2008b. A Local Aerosol Extraction Strategy for the Determination of the Aerosol Composition in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 23(9): 1192–1203. doi: 10.1039/B803934H
    MBGMR (inner Mongolian Bureau of Geology and Mineral Resources), 1985. Report of 1: 200 000 Regional Geological Research. Geological Publishing House, Beijing. (in Chinese)
    IMBGMR (inner Mongolian Bureau of Geology and Mineral Resources), 1991. Regional Geology of Inner Mongolian Automo. Geological Publishing House, Beijing. 7–725 (in Chinese with English Abstract) I
    Irvine, T. H., Baragar, W. R. A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523–548 doi: 10.1139/e71-055
    Jahn, B. M., Capdevila, R., Liu, D., et al., 2004. Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd Isotopic Evidence and Implications for Phanerozoic Crustal Growth. Journal of Asian Earth Sciences, 23(5): 629–653. doi: 10.1016/S1367-9120(03)00125-1
    Jahn, B. M., Wu, F. Y., Chen, B., 2000. Massive Granitoid Generation in Central Asia: Nd Isotopic Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82–92 doi: 10.18814/epiiugs/2000/v23i2/001
    Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577–600. doi: 10.1016/S0016-7037(96)00349-3
    Li, J. Y., 1998. Some New Ideas on Tectonics of NE China and Its Neighboring Areas. Geological Review, 44: 339–347 (in Chinese with English Abstract)
    Li, J. Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3): 207–224. doi: 10.1016/j.jseaes.2005.09.001
    Li, J. Y., Niu, B. G., Song, B., et al., 1999. Crustal Formation and Evolution of Northern Changbai Mountains, Northeast China. Geological Publishing House, Beijing. 1–137 (in Chinese with English Abstract)
    Li, X. H., Li, W. X., Li, Z. X., et al., 2008. 850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China: A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1): 341–357. doi: 10.1016/j.lithos.2007.04.007
    Liu, S., Hu, R. Z., Zhao, J. H., et al., 2005. Geochemical Characteristics and Petrogenetic Investigation of the Late Mesozoic Lamprophyres of Jiaobei, Shandong Province. Acta Petrologica Sinica, 21(3): 947–958 (in Chinese with English Abstract)
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1–2): 537–571. doi: 10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. doi: 10.1007/s11434-010-3052-4
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1–2): 34–43. doi: 10.1016/j.chemgeo.2008.08.004
    Ludwig, K. R., 2003. ISOPLOT 3: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre Special Publication, 4: 74
    McCulloch, M. T., Rosman, K. J. R., De Laeter, J. R., 1977. The Isotopic and Elemental Abundance of Ytterbium in Meteorites and Terrestrial Samples. Geochimica et Cosmochimica Acta, 41(12): 1703–1707. doi: 10.1016/0016-7037(77)90202-2
    Meng, E., Xu, W. L., Pei, F. P., et al., 2011. Permian Bimodal Volcanism in the Zhangguangcai Range of Eastern Heilongjiang Province, NE China: Zircon U-Pb-Hf Isotopes and Geochemical Evidence. Journal of Asian Earth Sciences, 41(2): 119–132. doi: 10.1016/j.jseaes.2011.01.005
    Pupin, J. P., 1980. Zircon and Granite Petrology. Contributions to Mineralogy and Petrology, 73(3): 207–220. doi: 10.1007/BF00381441
    Ren, J. S., Wang, Z. X., Chen, B. W., 1999. The Tectonics of China from a Global View: A Guide to the Tectonic Map of China and Adjacent Region. Geological Publishing House, Beijing. 1–32 (in Chinese)
    Rudnick, R. L., Gao, S., Ling, W. L., et al., 2004. Petrology and Geochemistry of Spinel Peridotite Xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 77(1): 609–637. doi: 10.1016/j.lithos.2004.03.033
    Sengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia. Nature, 364: 299–307. doi: 10.1038/364299a0
    She, H. Q., Li, J. W., Xiang, A. P., et al., 2012. U-Pb Ages of the Zircons from Primary Rocks in Middle-Northern Daxinganling and Its Implications to Geotectonic Evolution. Acta Petrologica Sinica, 28(2): 571–594 (in Chinese with English Abstract)
    Sorokin, A. A., Kudryashov, N. M., Li, J. Y., et al., 2004. Early Paleozoic Granitoids in the Eastern Margin of the Argun' Terrane, Amur Area: First Geochemical and Geochronologic Data. Petrology, 12(4): 367–376
    Sui, Z. M., Ge, W. C., Wu, F. Y., et al., 2006. U-Pb Chronology in Zircon from Harabaqi Granitic Pluton in Northeastern Daxinganling Area and Its Origin. Global Geology, 25(3): 229–236 (in Chinese with English Abstract)
    Sun, D. Y., Gou, J., Wang, T. H., 2013. Geochronological and Geochemical Constraints on the Erguna Massif Basement, NE China-Subduction History of the Mongol-Okhotsk Oceanic Crust. International Geology Review, 55(14): 1801–1816. doi: 10.1080/00206814.2013.804664
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Ocneanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in Ocean Basins. Geological Society of Special Publication, London, 42: 313–345
    Tang, J., Xu, W. L., Wang, F., et al., 2013. Geochronology and Geochemistry of Neoproterozoic Magmatism in the Erguna Massif, NE China: Petrogenesis and Implications for the Breakup of the Rodinia Supercontinent. Precambrian Research, 224: 597–611. doi: 10.1016/j.precamres.2012.10.019
    Thompson, R. N., Morrison, M. A., 1988. Asthenospheric and Lower-Lithospheric Mantle Contributions to Continental Extension Magmatism: an Example from the British Tertiary Province. Chemical Geology, 68(1): 1–15. doi:10.10 16/0009-2541(88)90082-4
    Wang, F., Xu, W. L., Meng, E., et al., 2012. Early Paleozoic Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi Massifs in the Eastern Segment of the Central Asian Orogenic Belt: Geochronological and Geochemical Evidence from Granitoids and Rhyolites. Journal of Asian Earth Sciences, 49: 234–248. doi: 10.1016/j.jseaes.2011.09.022
    Wang, Q., Liu, X. Y., Li, J. Y., 1991. Plate Tectonics between Cathaysia and Angaraland in China. Peking University Press, Beijing. 1–151 (in Chinese with English Abstract)
    Wang, W., Xu, W. L., Wang, F., et al., 2012. Zircon U-Pb Chronology and Assemblages of Mesozoic Granitoids in the Manzhouli-Erguna Area, NE China: Constraints on the Regional Tectonic Evolution. Geological Journal of China Universities, 18(1): 88–105 (in Chinese with English Abstract)
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granite: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralalogy and Petrology, 95(4): 407–419. doi: 10.1007/BF00402202
    Wiedenbeck, M., Alle, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 19(1): 1–23. doi: 10.1111/j.1751-908X.1995.tb00147
    Woodhead, J., Hergt, J., Shelley, M., et al., 2004. Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation. Chemical Geology, 209(1–2): 121–135. doi: 10.1016/j.chemgeo.2004.04.026
    Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1–30. doi: 10.1016/j.jseaes.2010.11.014
    Wu, F. Y., Zhao, G. C., Sun, D. Y., et al., 2007. The Hulan Group: its Role in the Evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 30(3): 542–556. doi: 10.1016/j.jseaes.2007.01.003
    Wu, G., Chen, Y. C., Chen, Y. J., et al., 2012. Zircon U-Pb Ages of the Metamorphic Supracrustal Rocks of the Xinghuadukou Group and Granitic Complexes in the Argun Massif of the Northern Great Hinggan Range, NE China, and Their Tectonic Implications. Journal of Asian Earth Sciences, 49: 214–233. doi:10.1016/j.jseaes. 2011.11.023
    Wu, G., Sun, F. Y., Zhao, C. S., et al., 2005. Discovery of the Early Paleozoic Post-Collisional Granites in Northern Margin of the Erguna Massif and Its Geological Significance. Chinese Science Bulletin, 50(23): 2733–2743. doi: 10.1007/BF02899644 (in Chinese)
    Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069. doi: 10.1029/2002TC001484.
    Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2009. End-Permian to Early-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98: 1189–1217 doi: 10.1007/s00531-008-0407-z
    Xiao, W. J., Zhang, L. C., Qin, K. H., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tienshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304: 370–395 doi: 10.2475/ajs.304.4.370
    Xie, M. Q., 2000. Amalgamating Plate Tectonic and Its Droved Mecha-Nism-Tectonic Evolution of Northeast China and Adjacent Area. Science Press, Beijing. 21–45 (in Chinese)
    Xu, W. L., Ji, W. Q., Pei, F. P., et al., 2009. Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China: Chronology, Geochemistry, and Tectonic Implications. Journal of Asian Earth Sciences, 34(3): 392–402. doi: 10.1016/j.jseaes.2008.07.001.
    Xu, W. L., Pei, F. P., Wang, F., et al., 2013. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 74: 167–193. doi: 10.1016/j.jseaes.2013.04.003.
    Yang, J. H., Wu, F. Y., Shao, J., et al., 2006. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 246(3–4): 336–352. doi: 10.1016/j.epsl.2006.04.029
    Ye, H. W., Zhang, X., 1994. The 40Ar-39Ar Age of the Vein Crossite in Blueschist in Mudanjiang Area, NE China and its Geological Implication. Journal of Changchun University of Earth Sciences, 24: 369–372 (in Chinese with English Abstract)
    Ye, M., Zhang, S. H., Wu, F. Y., 1994. Tectonic Units and Evolution along the Manzhouli-Suifenhe Geo-Profile. Journal of Changchun University of Science and Technology, 24: 241–245 (in Chinese with English Abstract)
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(849) PDF downloads(226) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint