Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 3
Jul 2015
Turn off MathJax
Article Contents
Xianzhong Ke, Shuyun Xie, Youye Zheng, Salah Fadlallah Awadelseid, Shunbao Gao, Liming Tian. Multifractal analysis of geochemical stream sediment data in Bange region, northern Tibet. Journal of Earth Science, 2015, 26(3): 317-327. doi: 10.1007/s12583-015-0538-7
Citation: Xianzhong Ke, Shuyun Xie, Youye Zheng, Salah Fadlallah Awadelseid, Shunbao Gao, Liming Tian. Multifractal analysis of geochemical stream sediment data in Bange region, northern Tibet. Journal of Earth Science, 2015, 26(3): 317-327. doi: 10.1007/s12583-015-0538-7

Multifractal analysis of geochemical stream sediment data in Bange region, northern Tibet

doi: 10.1007/s12583-015-0538-7
More Information
  • Corresponding author: Shuyun Xie, tinaxie2006@gmail.com
  • Received Date: 07 Jan 2015
  • Accepted Date: 10 Apr 2015
  • Publish Date: 01 Jun 2015
  • The aim of this study is to quantify the geochemical elements distribution patterns analyzed from stream sediment data and then to delineate favorable areas for mineral exploration. A total of 7 270 stream sediment samples were collected from four subareas and 37 rock (ore) chip samples from five different locations in the Bange region, northern Tibet (China). The multifractal spectra of 12 elements including Au, Ag, As, Cu, Mo, Pb, Zn, W, Sn, Bi, Sb and Hg are represented by the method of moments, and characterized by five quantitative multifractal parameters. The results show that the multifractality for Cu and Bi in the Gongma area is much stronger than those in other subareas. Both the asymmetry index of multifractal spectra and the variance coefficients of Cu and Bi in this area are the highest, which imply that the distribution pattern of Cu and Bi in the Gongma area is the most heterogeneous. These multifractal parameters indicate that the Gongma area is the most favorable for prospecting Cu and Bi. The results obtained by the method of moments are in agreement with petrochemical analysis and field observation. It is suggested that multifractal analysis can be used as an effective tool to evaluate the ore-forming potential in the study area and to provide new approaches for geochemical exploration.

     

  • loading
  • Agterberg, F. P., 2001. Multifractal Simulation of Geochemical Map Patterns. Journal of China University of Geosciences, 12(1): 31-39. doi: 10.1007/978-1-4615-1359-9_17
    Carlson, C. A., 1991. Spatial Distribution of Ore Deposits. Geology, 19(2): 111-114. doi: 10.1130/0091-7613(1991)019<0111:SDOOD>2.3.CO
    Carranza, E. J. M., 2009. Controls on Mineral Deposit Occurrence Inferred from Analysis of Their Spatial Pattern and Spatial Association with Geological Features. Ore Geology Reviews, 35(3-4): 383-400. doi: 10.1016/j.oregeorev.2009.01.001
    Cheng, Q. M., 1995. The Perimeter-Area Fractal Model and Its Application to Geology. Mathematical Geology, 27(1): 69-82. doi: 10.1007/BF02083568
    Cheng, Q. M., 1999a. Spatial and Scaling Modeling for Geochemical Anomaly Separation. Journal of Geochemical Exploration, 65(3): 175-194. doi: 10.1016/S0375-6742(99)00028-X
    Cheng, Q. M., 1999b. Multifractality and Spatial Statistics. Computers and Geosciences, 25(9): 949-961. doi: 10.1016/S0098-3004(99)00060-6
    Cheng, Q. M., 2000a. Multifractal Theory and Geochemical Element Distribution Pattern. Earth Science—Journal of China University of Geosciences, 25(3): 311-318 (in Chinese with English Abstract)
    Cheng, Q. M., 2000b. GeoData Analysis System (GeoDAS) for Mineral Exploration: User's Guide and Exercise Manual. Material for the Training Workshop on GeoDAS Held at York University, Toronto
    Cheng, Q. M., Agterberg, F. P., 1995. Multifractal Modeling and Spatial Point Processes. Mathematical Geology, 27(7): 831-845. doi: 10.1007/BF02087098
    Cheng, Q. M., Agterberg, F. P., 1996. Multifractal Modeling and Spatial Statistics. Mathematical Geology, 28(1): 1-16. doi: 10.1007/BF02273520
    Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. The Separation of Geochemical Anomalies from Background by Fractal Methods. Journal of Geochemical Exploration, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2
    Cheng, Q. M., Agterberg, F. P., Bonham-Carter, G. F., 1996. A Spatial Analysis Method for Geochemical Anomaly Separation. Journal of Geochemical Exploration, 56(3): 183-195. doi: 10.1016/S0375-6742(96)00035-0
    Cheng, Q. M., Bonham-Carter, G. F., Hall, G. E. M., et al., 1997. Statistical Study of Trace Elements in the Soluble Organic and Amorphous Fe-Mn Phases of Surficial Sediments, Sudbury Basin. 1. Multivariate and Spatial Analysis. Journal of Geochemical Exploration, 59(1): 27-46. doi: 10.1016/S0375-6742(96)00046-5
    Evertsz, C. J. G., Mandelbrot, B. B., 1992. Multifractal Measures(Appendix B). In: Peitgen, H. O., Jurgens, H., Saupe, D., eds., Chaos and Fractals. Springer-Verlag, New York
    Feder, J., 1988. Fractals. Plenum Press, New York
    Gao, S. B., Zheng, Y. Y., Wang, J. S., et al., 2011a. The Geochronology and Geochemistry of Intrusive Rocks in Bange Area: Constraints on the Evolution Time of the Bangong Lake-Nujiang Ocean Basin. Acta Petrologica Sinica, 27(7): 1973-1982 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201107007.htm
    Gao, S. B., Zheng, Y. Y., Xie, M. C., et al., 2011b. Geodynamic Setting and Mineralizational Implication of the Xueru Intrusion in Ban'ge, Tibet. Earth Science--Journal of China University of Geosciences, 36(4): 729-739 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201104011.htm
    Grunsky, E. C., Agterberg, F. P., 1988. Spatial and Multivariate Analysis of Geochemical Data from Metavolcanic Rocks in the Ben Nevis Area, Ontario. Mathematical Geology, 20(7): 825-861. doi: 10.1007/BF00890195
    Gumiel, P., Sanderson, D. J., Arias, M., et al., 2010. Analysis of the Fractal Clustering of Ore Deposits in the Spanish Iberian Pyrite Belt. Ore Geology Reviews, 38(4): 307-318. doi: 10.1016/j.oregeorev.2010.08.001
    He, Z. H., Li, S. Q., Hu, Z. K., 2004. Discussion on Industrial Index of Bismuth Deposit. Geology and Mineral Resources of South China, 2: 32-34 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200402006.htm
    Halsey, T. C., Jensen, M. H., Kadanoff, L. P., et al., 1986. Fractal Measures and Their Singularities--The Characterization of Strange Sets. Physical Review A, 33(2): 1141-1151. doi: 10.1103/PhysRevA.33.1141
    Hou, Z. Q., Yang, Z. M., Qu, X. M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen. Ore Geology Review, 36(3): 25-51. doi: 10.1016/j.oregeorev.2008.09.006
    Li, C. J., Xu, Y. L., Jiang, X. L., 1994. The Fractal Model of Mineral Deposits. Geology of Zhejiang, 10(2): 25-32 (in Chinese with English Abstract) http://ci.nii.ac.jp/naid/10030173791
    Li, G. M., Pan, G. T., Wang, G. M., et al., 2004. Evaluation and Prospecting Value of Mineral Resources in Gangdise Metallogenic Belt, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 31(1): 22-27 (in Chinese with English Abstract) http://www.researchgate.net/publication/293287218_Evaluation_and_prospecting_value_of_mineral_resources_in_Gangdise_metallogenic_belt_Tibet_China
    Li, G. M., She, H. Q., Zhang, L., et al., 2009. Based on Mineral Resource Assessment System (MRAS) for the Metallogenic Prognosis in Gangdese Metallogenic Belt, Tibet. Geology and Exploration, 45(6): 645-654 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200906004.htm
    Liu, Y. J., Cao, L. M., 1987. An Introduction on Elements Geochemistry. Geological Publishing House, Beijing (in Chinese)
    Mandelbrot, B. B., 1983. The Fractal Geometry of Nature. W. H. Freeman, New York
    Ministry of Land and Resources of China, 2002. Specifications for Copper, Lead, Zinc, Silver, Nickel and Molybdenum Mineral Exploration. Geology and Mineral Resource Industry Standard of the PRC (DZ/T 0214-2002), Beijing (in Chinese)
    Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatial- Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English Abstract) http://www.oalib.com/paper/1472080
    Qu, X. M., Hou, Z. Q., Huang, W., 2001. Is Gangdese Porphyry Copper Belt the Second "Yulong" Copper Belt? Mineral Deposits, 20(4): 355-366 (in Chinese with English Abstract)
    Raines, G. L., 2008. Are Fractal Dimensions of the Spatial Distribution of Mineral Deposits Meaningful? Natural Resources Research, 17(2): 87-97. doi: 10.1007/s11053-008-9067-8
    Rui, Z. Y., Hou, Z. Q., Qu, X. M., et al., 2003. Metallogenetic Epoch of Gangdese Prophyry Copper Belt and Uplift of Qinghai-Tibet Plateau. Mineral Deposits, 22(3): 217-225 (in Chinese with English Abstract) http://www.researchgate.net/publication/312970176_Metallogenetic_epoch_of_Gangdese_porphyry_copper_belt_and_uplift_of_Qinghai-Tibet_Plateau
    Rui, Z. Y., Li, G. M., Zhang, L. S., et al., 2006. Metallic Ore Deposits on the Qinghai-Tibet Plateau. Geology in China, 33(2): 363-373 (in Chinese with English Abstract)
    Sanderson, D. J., Roberts, S., Gumiel, P., 1994. A Fractal Relationship between Vein Thickness and Gold Grade in Drill Core from La Codosera, Spain. Economic Geology, 89(1): 168-173. doi: 10.2113/gsecongeo.89.1.168
    She, H. Q., Li, G. M., Dong, Y. J., et al., 2009. Regional Metallogenic Prognosis and Mineral Reserves Estimation for Porphyry Copper Deposits in Gangdese Polymetallic Ore Belt, Tibet. Mineral Deposits, 28(6): 803-814 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200906008.htm
    Shi, J. F., Wang, C. N., 1998. Fractal Analysis of Gold Deposits in China: Implication for Giant Deposit Exploration. Earth Science--Journal of China University of Geosciences, 23(6): 616-618 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX806.013.htm
    Sinclair, A. J., 1991. A Fundamental Approach to Threshold Estimation in Exploration Geochemistry: Probability Plots Revisited. Journal of Geochemical Exploration, 41(1-2): 1-22. doi: 10.1016/0375-6742(91)90071-2
    Song, L., 2011. The Research About Minerogenetic Series in the Middle of Bangonghu-Nujiang Metallogenic Belt, Tibet: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract)
    Stanley, C. R., 1988. Comparison of Data Classification Procedures in Applied Geochemistry Using Monte Carlo Simulation: [Dissertation]. University of British Columbia, Vancouver
    Stanley, C. R., Sinclair, A. J., 1989. Comparison of Probability Plots and Gap Statistics in the Selection of Threshold for Exploration Geochemistry Data. Journal of Geochemical Exploration, 32(1-3): 355-357. doi: 10.1016/0375-6742(89)90076-9
    Turcotte, D. L., 1997. Fractals and Chaos in Geology and Geophysics, 2nd Edition. Cambridge University Press, Cambridge
    Turcotte, D. L., 2002. Fractals in Petrology. Lithos, 65(3-4): 261-271. doi: 10.1016/S0024-4937(02)00194-9
    Wang, Q. H., Wang, B. S., Li, J. G., et al., 2002. Basic Features and Ore Prospect Evaluation of the Gangdise Island Arc, Tibet, and Its Copper Polymetallic Ore Belt. Geological Bulletin of China, 21(1): 35-45 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200201006.htm
    Wang, Z. J., Cheng, Q. M., Cao, L., et al., 2006. Fractal Modelling of the Microstructure Property of Quartz Mylonite during Deformation Process. Mathematical Geology, 39(1): 53-68. doi: 10.1007/s11004-006-9065-5
    Wang, Z. J., Cheng, Q. M., Xu, D. Y., et al., 2008. Fractal Modeling of Sphalerite Banding in Jinding Pb-Zn Deposit, Yunnan, Southwestern China. Journal of China University of Geosciences, 19(1): 77-84. doi: 10.1016/S1002-0705(08)60027-8
    Xie, S. Y., 2003. Fractal and Multifractal Properties of Geochemical Fields: [Dissertation]. China University of Geosciences, Wuhan
    Xie, S. Y., Bao, Z. Y., 2003a. Multifractal and Geochemical Element Distribution Patterns. Geology-Geochemistry, 31(3): 97-102 (in Chinese with English Abstract)
    Xie, S. Y., Bao, Z. Y., 2003b. The Method of Moments and Its Application to the Study of Mineralization in Shaoguan District, North Guangdong, China. Journal of Jilin University (Earth Science Edition), 33(4): 443-448 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200304010.htm
    Xie, S. Y., Bao, Z. Y., 2004a. Fractal and Multifractal Properties of Geochemical Fields. Mathematical Geology, 36(7): 847-864. doi: 10.1023/B:MATG.0000041182.70233.47
    Xie, S. Y., Bao, Z. Y., 2004b. Application of Multifractal to Ore-Forming Potential Evaluation. Journal of Chengdu University of Technology (Science & Technology Edition), 31(1): 28-33 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200401005.htm
    Xie, S. Y., Cheng, Q. M., Chen, G., et al., 2007. Application of Local Singularity in Prospecting Potential Oil/Gas Targets. Nonlinear Processes in Geophysics, 14(3): 285-292. doi: 10.5194/npg-14-285-2007
    Xie, S. Y., Cheng, Q. M., Ke, X. Z., et al., 2008. Identification of Geochemical Anomaly by Multifractal Analysis. Journal of China University of Geosciences, 19(4): 334-342. doi: 10.1016/S1002-0705(08)60066-7
    Xie, S. Y., Cheng, Q. M., Xing, X. T., et al., 2010. Geochemical Multifractal Distribution Patterns in Sediments from Ordered Streams. Geoderma, 160(1): 36-46. doi: 10.1016/j.geoderma.2010.01.009
    Xie, X. J., Yin, B. C., 1993. Geochemical Patterns from Local to Global. Journal of Geochemical Exploration, 47(1-3): 109-129. doi: 10.1016/0375-6742(93)90061-P
    Zhang, J. C., Wang, X. W., Lei, C. Y., et al., 2011. Genesis of Late Yanshanian Granites and the Ore-Search Prospect in the Duoba-Bange Area, Gangdise Belt, Tibet, China. Journal of Chengdu University of Technology (Science and Technology Edition), 38(6): 671-677 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG201106014.htm
    Zhao, Y. Y., Liu, Y., Wang, R. J., et al., 2010. The Discovery of the Bismuth Mineralization Belt in the Bangong Co-Nujiang Metallogenic Belt of Tibet and Its Adjacent Areas and Its Geological Significance. Acta Geoscientica Sinica, 31(2): 183-193 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-DQXB201002010.htm
    Zheng, Y. Y., Wang, B. S., Fan, Z. H., et al., 2002. Analysis of Tectonic Evolution in the Eastern Section of the Gangdise Mountains, Tibet and the Metallogenic Potentialities of Copper Gold Polymetal. Geological Science and Techonology Information, 21(2): 55-60 (in Chinese with English Abstract) http://en.cnki.com.cn/article_en/cjfdtotal-dzkq200202013.htm
    Zheng, Y. Y., Xue, Y. X., Gao, S. B., 2003. Copper-Polymetal Metallogenic Series and Prospecting Perspective of Eastern Section of Gangdise. Earth Science—Journal of China University of Geosciences, 14(4): 349-355 (in Chinese with English Abstract)
    Zhu, D. C., Pan, G. T., Mo, X. X., et al., 2006. Late Jurassic- Early Cretaceous Geodynamic Setting in Middle-northern Gangdese: New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3): 534-546 (in Chinese with English Abstract) http://qikan.cqvip.com/Qikan/Article/Detail?id=23324706
    Zuo, R. G., 2011. Identifying Geochemical Anomalies Associated with Cu and Pb-Zn Skarn Mineralization using Principal Component Analysis and Spectrum-Area Fractal Modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111(1-2): 13-22. doi: 10.1016/j.gexplo.2011.06.012
    Zuo, R. G., Cheng, Q. M., Agterberg, F. P., et al., 2009. Application of Singularity Mapping Technique to Identification Local Anomalies Using Stream Sediment Geochemical Data: A Case Study from Gangdese, Tibet, Western China. Journal of Geochemical Exploration, 101(3): 225-235. doi: 10.1016/j.gexplo.2008.08.00
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views(798) PDF downloads(172) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return