Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 3
Jul 2015
Turn off MathJax
Article Contents
Haiyan Hu, Zhiping Zeng, Jianzhang Liu. Key elements controlling oil accumulation within the tight sandstones. Journal of Earth Science, 2015, 26(3): 328-342. doi: 10.1007/s12583-015-0550-y
Citation: Haiyan Hu, Zhiping Zeng, Jianzhang Liu. Key elements controlling oil accumulation within the tight sandstones. Journal of Earth Science, 2015, 26(3): 328-342. doi: 10.1007/s12583-015-0550-y

Key elements controlling oil accumulation within the tight sandstones

doi: 10.1007/s12583-015-0550-y
More Information
  • Corresponding author: Haiyan Hu, hyhucom@163.com
  • Received Date: 02 Jan 2015
  • Accepted Date: 07 May 2015
  • Publish Date: 01 Jun 2015
  • Tight oil sandstone reservoirs with low porosity and permeability, which are an unconventional petroleum resource, have been discovered in the Jurassic intervals of the central Junggar Basin, the northwestern China. To reveal the accumulation mechanism, a relatively comprehensive research was conducted, including oil-source correlation, porosity evolution, and hydrocarbon charging history. The results show that crude oil of these tight sandstone reservoirs were mainly from Permian source rocks with some contribution from Jurassic source rocks. The reservoirs were buried at shallow depth (< 3 100 m) and exposed to weak diagenesis, and thus had high porosity (18.5%) when the Permian-sourced oil from Permian source rock was charging, indicating high GOI values (> 5%). In contrast, the sandstone reservoir had already become tight and did not provide available space to accumulate oil due to severe compaction and cementation when hydrocarbon from Jurassic source rock filled, evidenced by low GOI values (< 5%). Therefore, reservoir porosity controls the oil accumulation within tight sandstone. Whether tight sandstone reservoirs accumulate oil depends on the reservoir quality when hydrocarbons charge. Before the exploration of tight oil sandstone reservoirs, it should be required to investigate the relationship between oil charging history and porosity evolution to reduce the exploration risk and figure out the available targets.

     

  • loading
  • Ameen, M., MacPherson, K., Al-Marhoon, M., et al., 2012. Diverse Fracture Properties and Their Impact on Performance in Conventional and Tight-Gas Reservoirs, Saudi Arabia: The Unayzah, South Haradh Case Study. AAPG Bulletin, 96(3): 459-492 doi: 10.1306/06011110148
    Beard, D. C., Weyl, P. K., 1973. Influence of Texture on Porosity and Permeability of Unconsolidated Sand. AAPG Bulletin, 57: 349-369 http://aapgbull.geoscienceworld.org/content/57/2/349
    Bhullar, A. G., Karlsen, D. A., Lacharpagne, J. C., et al., 1999a. Reservoir Screening SsingIatroscan TLC-FID and Identification of Paleo-Oil Zones, Oil-Water Contacts, Tar Mats and Residual Oil Saturations in the Frøy and Rind Petroleum Accumulations. Journal of Petroleum Science and Engineering, 23: 41-63 doi: 10.1016/S0920-4105(99)00007-8
    Bhullar, A. G., Karlsen, D. A., Backer-Owe, K., et al., 1999b. Dating Reservoir Filling-A Case History from the North Sea. Marine and Petroleum Geology, 16: 581-603 doi: 10.1016/S0264-8172(99)00028-8
    Brincat, M., Gartrell, M., Lisk, W., et al., 2006. An Integrated Evaluation of Hydrocarbon Charge and Retention at the Griffin, Chinook, and Scindian Oil and Gas Fields, Barrow Subbasin, North West Shelf, Australia. AAPG Bulletin, 90: 1359-1380 doi: 10.1306/02210605103
    Camp, W. K., 2011. Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales: Discussion. AAPG Bulletin, 95(8): 1443-1447 doi: 10.1306/12141010019
    Cao, J., Wang, X. L., Sun, P. A., et al., 2012. Geochemistry and Origins of Natural Gases in the Central Junggar Basin, Northwest China. Organic Geochemistry, 53(12): 166-176 http://www.sciencedirect.com/science/article/pii/S0146638012001258
    Cao, J., Wang, X. L., Sun, P., et al., 2011. Grains Containing Oil Inclusions in Different Hydrocarbon Production and Show Types of Sandstone Reservoirs from the Central Junggar Basin, Northwest China. Acta Geologica Sinica (English Edition), 85(5): 1163-1172 doi: 10.1111/j.1755-6724.2011.00548.x
    Cao, J., Yao, S. P., Jin, Z. J., et al., 2006. Petroleum Migration and Mixing in the Northwestern Junggar Basin (NW China): Constraints from Oil-Bearing Fluid Inclusion Analyses. Organic Geochemistry, 37: 827-846 doi: 10.1016/j.orggeochem.2006.02.003
    Carroll, A. R., 1998. Upper Permian Lacustrine Organic Facies Evolution, Southern Junggar Basin, NW China. Organic Geochemistry, 28: 649-667 doi: 10.1016/S0146-6380(98)00040-0
    Carroll, A. R., Brassell, S. C., Graham, S. A., 1997. Upper Permian Lacustrine Oil Shales, Southern Junggar Basin, Northwest China. AAPG Bulletin, 76: 1874-1902
    Chen, J., Liang, D., Wang, X. L., 2003. Oil-Source Identification for the Mixed Oils Derived from Multiple Source Rocks in the Cainan Oilfield, Junggar Basin, Northwest China. Part Ⅰ: Fundamental Geochemical Features of Source Rock. Petroleum Exploration and Development, 30(4): 20-24 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200304006.htm
    Coleman, J. L., 2008. Tight-Gas Sandstone Reservoirs: 25 Years of Searching for "the Answer''. In: Cumella, S. P., Shanley, K. W., Camp, W. K., eds., Understanding, Exploring, and Developing Tight-Gas Sands-2005 Vail Hedberg Conference. AAPG Hedberg Series, 3: 221-250
    Dutton, S., Loucks R., 2010. Diagenetic Controls on Evolution of Porosity and Permeability in Lower Tertiary Wilcox Sandstones from Shallow to Ultradeep (200-6 700 m) Burial, Gulf of Mexico Basin, U.S.A. . Marine and Petroleum Geology, 27: 69-81 doi: 10.1016/j.marpetgeo.2009.08.008
    Feely, M., Parnell, J., 2003. Fluid Inclusion Studies of Well Samples from the Hydrocarbon Prospective Porcupine Basin, Offshore Ireland. Journal of Geochemical Exploration, 78-79: 55-59 doi: 10.1016/S0375-6742(03)00134-1
    George, S. C., Lisk, M., Eadington, P. J., 2004. Fluid Inclusion Evidence for an Early, Marine-Sourced Oil Charge Prior to Gas-Condensate Migration, Bayu-1, Timor Sea, Australia. Marine and Petroleum Geology, 21: 1107-1128 doi: 10.1016/j.marpetgeo.2004.07.001
    George, S. C., Volk, H., Ahmed, M., 2007. Geochemical Analysis Techniques and Geological Applications of Oil-Bearing Fluid Inclusions, with Some Australian Case Studies. Journal of Petroleum Science and Engineering, 57: 119-138 doi: 10.1016/j.petrol.2005.10.010
    Hanson, A. D., Zhang, S. C., Moldowan, J. M., et al., 2000. Molecular Organic Geochemistry of the Tarim Basin, Northwest China. AAPG Bulletin, 84: 1109-1128
    Hao, F., 2005. Kinetics of Hydrocarbon Generation and Mechanisms of Petroleum Accumulation in Overpressure Basins. Science Press, Beijing. 178 (in Chinese with English Abstract)
    Hao, F., Zhang, Z. H., Zou, H. Y., et al., 2011. Origin and Mechanism of the Formation of the Low-Oil-Saturation Moxizhuang Field, Junggar Basin, China: Implication for Petroleum Exploration in Basins Having Complex Histories. AAPG Bulletin, 95: 983-1008 doi: 10.1306/11191010114
    Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2009a. Mechanisms for Oil Depletion and Enrichment on the Shijiutuo Uplift, Bohai Bay Basin, China. AAPG Bulletin, 93: 1015-1037 doi: 10.1306/04140908156
    Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2009b. Charging of the Neogene Penglai 19-3 Field, Bohai Bay Basin, China: Oil Accumulation in a Young Trap in an Active Fault Zone. AAPG Bulletin, 93: 155-179 doi: 10.1306/09080808092
    Hu, H., Li, P., Wang, G., 2008. Mechanism of Secondary Porosity Development of Xishanyao Formation (J2x) in Yongjin Block, Junggar Basin. Geological Science and Technology Information, 27(3): 21-26 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200803006.htm
    Jin, S. D., Wang, H., Gan, H., et al., 2013. Control of Anticline Crest Zone on Depositional System and Its Geological Significance for Petroleum in Changshaling, Yinger Sag, Eastern Jiuquan Basin. Journal of Earth Science, 24(6): 947-961 doi: 10.1007/s12583-013-0388-0
    Jonk, R., Parnell, J., Whitham, A., 2005. Fluid Inclusion Evidence for a Cretaceouse-Paleocene Petroleum System, Kangerlussuaq Basin, East Greenland. Marine and Petroleum Geology, 22(3): 319-330 doi: 10.1016/j.marpetgeo.2005.01.002
    Justwan, H., Dahl, B., Isaksen, G. H., 2006. Geochemical Characterization and Genetic Origin of Oils and Condensates in the South Viking Graben, Norway. Marine and Petroleum Geology, 23: 213-239 doi: 10.1016/j.marpetgeo.2005.07.003
    Kuang, J., Tang, Y., Zhu, G. H., 2002. Basic Characteristics and Main Controlling Factors of Jurassic Reservoirs in Junggar Basin. Petroleum Exploration and Development, 29(1): 52-56 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200201012.htm
    Kuang, L., Zheng, H., Wang, M., et al., 2010. Timing and Mechanism of Reservoir Forming in the Upper Triassic Halahatang Formation, Yuqi Block, Tarim Basin, Northwestern China. Marine and Petroleum Geology, 27: 1830-1840 doi: 10.1016/j.marpetgeo.2010.08.004
    Law, B. E., 2002. Basin-Centered Gas System. AAPG Bulletin, 86(11): 1891-1919
    Law, B. E., Curtis, J. B., 2001. Introduction to Unconventional Petroleum Systems. AAPG Bulletin, 86(10): 1851-1862
    Li, P. L., Feng, J. H., Lu, Y. C., et al., 2010. Structure, Sedimentation, and Petroleum Accumulation in the Junggar Basin. Geological Publishing House, Beijing. 340 (in Chinese)
    Li, P., Zou, H., Hao, F., et al., 2006. Restoration of Eroded Strata Thickness in Cretaceous/Jurassic Unconformity in Hinterland of Junggar Basin. Acta Petrolei Sinica, 27(6): 34-38 (in Chinese with English Abstract) http://www.researchgate.net/publication/295136134_Restoration_of_eroded_strata_thickness_in_CretaceousJurassic_unconformity_in_hinterland_of_Junggar_Basin
    Lisk, M., O'Brien, G. W., Eadington, P. J., 2002. Quantitative Evaluation of the Oil-Leg Potential in the Oliver Gas Field, Timor Sea, Australia. AAPG Bulletin, 86: 1531-1542 http://www.researchgate.net/publication/308493592_Quantitative_evaluation_of_the_oil-leg_potential_in_the_Oliver_gas_field_Timor_Sea_Australia
    Milliken, K., 2001. Diagenetic Heterogeneity in Sandstone at the Outcrop Scale, Breathitt Formation (Pennsylvanian), Eastern Kentucky. AAPG Bulletin, 85: 795-815 http://www.researchgate.net/publication/249897532_Diagenetic_heterogeneity_in_sandstone_at_the_outcrop_scale_Breathitt_Formation_Pennsylvanian_eastern_Kentucky
    Nelson, P. H., 2009. Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales. AAPG Bulletin, 93(3): 329-340 doi: 10.1306/10240808059
    Nelson, P. H., 2011. Pore-Throat Sizes in Sandstones, Siltstones, and Shales: Reply. AAPG Bulletin, 95(8): 1448-1453 doi: 10.1306/12141010159
    Ohm, S. E., Karlsen, D. A., Austin, T. J., 2008. Geochemically Driven Exploration Models in Uplifted Area: Examples from the Norwegian Barents Sea. AAPG Bulletin, 92: 1191-1223 doi: 10.1306/06180808028
    Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide, Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, Cambridge. 1155
    Peters, K. E., Moldowan, J. M., 1993. The Biomarker Guide. Prentice Hall, Englewood Cliffs. 363
    Qiu, N. S., Yang, H. B., Wang, X. L., 2002. Tectono-Thermal Evolution in the Junggar Basin. Chinese Journal of Geology, 37(4): 423-429 (in Chinese with English Abstract)
    Qiu, N. S., Zhang, Z. H., Xu, E. S., 2008. Geothermal Regime and Jurassic Source Rock Maturity of the Junggar Basin, Northwest China. Journal of Asian Earth Sciences, 31: 464-478 doi: 10.1016/j.jseaes.2007.08.001
    Shanley, K. W., Cluff, R. M., Robinson, J. W., et al., 2004. Factors Controlling Prolific Gas Production from Low-Permeability Sandstone Reservoirs: Implications for Resource Assessment, Prospect Development, and Risk Analysis. AAPG Bulletin, 88(8): 1083-1121 doi: 10.1306/03250403051
    Sun, Q., Xie, H. S., Guo, J., et al., 2000. Fluid Inclusions in Sedimentary Basins Generating Petroleum and Their Application. Journal of Changchun University of Science and Technology, 30(1): 42-45 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200001010.htm
    Surdam, R. C., Crossey, L. J., Hagen, E. S., et al., 1989. Organic-Inorganic Interactions and Sandstone Diagenesis. AAPG Bulletin, 73: 1-23 http://www.researchgate.net/publication/237072808_Organic-inorganic_interactions_and_Sandstone_diagenesis
    Volk, H., George, S. C., Middleton, H., et al., 2005. Geochemical Comparison of Fluid Inclusion and Present-Day Oil Accumulations in the Papuan Foreland: Evidence for Previously Unrecognized Petroleum Source Rocks. Organic Geochemistry, 36: 29-51 doi: 10.1016/j.orggeochem.2004.07.018
    Wilkinson, M., Haszeldinea, R. S., Ellam, R. M., et al., 2004. Hydrocarbon Flling History from Diagenetic Evidence: Brent Group, UK North Sea. Marine and Petroleum Geology, 21(1): 443-455 http://www.sciencedirect.com/science/article/pii/S0264817203000928
    Wu, H., Liang, X., Xiang, C., et al., 2007. Syncline Reservoir and Its Accumulation Mechanism in the Songliao Basin. Science in China Series D: Earth Sciences, 37(2): 185-191
    Xiong, W. L., Chen, H. H., Lu, Y., et al., 2013. Hydrocarbon Charing History for Silurian Reservoirs of Shuntouguole Block in the North Slope of Tazhong Uplift, Tarim Basin: Constraints from Fluid Inclusion of Well Shun 9. Acta Petrolei Sinica, 34(2): 239-247 (in Chinese with English Abstract) doi: 10.1038/aps.2012.145
    Yin, W., Bie, B. W., Liu, G., 2009. The Characteristics of Fluid Inclusions and Its Application to Identifying Oil Accumulating Stages in Central Depression, Junggar Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 28(1): 53-61 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200901010.htm
    Zeng, J. H., Kong, X., Cheng, S. W., 2009. Hydrocarbon Accumulation Characteristics of the Low Permeability Sandstone Reservoir and Their Implication for Petroleum Exploration. Geosciences, 23(4): 755-760 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200904022.htm
    Zeng, L. B., Li, X. Y., 2009. Fractures in Sandstone Reservoirs with Ultra-Low Permeability: A Case Study of the Upper Triassic Yanchang Formation in the Ordos Basin, China. AAPG Bulletin, 93(4): 461-477 doi: 10.1306/09240808047
    Zhu, Z. Q., Zeng, J. H., 2007. An Experimental Study on Oil Migration and Accumulation in Low-Permeability Sandstone. Oil & Gas Geology, 28(2): 229-234 (in Chinese with English Abstract)
    Zhu, Z., Zeng, J., Wang, J., 2010. Microscopic Experiment on Oil Flowing through Porous Media in Low Permeability Sandstone. Journal of Southwest Petroleum University (Science & Technology Edition), 32(1): 16-22 (in Chinese with English Abstract)
    Zou, C. N., Tao, S. Z., Yang, Z., et al., 2013. Development of Petroleum Geology in China: Discussion on Continuous Petroleum Accumulation. Journal of Earth Science, 24(5): 796-803 doi: 10.1007/s12583-013-0373-7
    Zou, H. Y., Zhang, Y. C., Liu, J. Z., et al., 2008. Evolution of the Moxizhuang Oil Field, Central Junggar Basin, Northwest China. Journal of China University of Geosciences, 19: 242-251 doi: 10.1016/S1002-0705(08)60043-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(836) PDF downloads(144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return