Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 4
Aug 2015
Turn off MathJax
Article Contents
Yuqing Wang, Zhenming Peng, Yanmin He. Instantaneous attributes analysis of seismic signals using improved HHT. Journal of Earth Science, 2015, 26(4): 515-521. doi: 10.1007/s12583-015-0555-6
Citation: Yuqing Wang, Zhenming Peng, Yanmin He. Instantaneous attributes analysis of seismic signals using improved HHT. Journal of Earth Science, 2015, 26(4): 515-521. doi: 10.1007/s12583-015-0555-6

Instantaneous attributes analysis of seismic signals using improved HHT

doi: 10.1007/s12583-015-0555-6
More Information
  • Corresponding author: Zhenming Peng, zmpeng@uestc.edu.cn
  • Received Date: 11 Aug 2014
  • Accepted Date: 23 Dec 2014
  • Publish Date: 01 Aug 2015
  • As the key technique of improved Hilbert-Huang transform (HHT), ensemble empirical mode decomposition (EEMD) has a good performance of eliminating mode mixing phenomenon, which has a strong impact on the observation of seismic information. However, the intrinsic mode functions (IMF) obtained from EEMD contain noises, so that it is required to find a more robust frequency estimation method to calculate the instantaneous frequency (IF) of IMF. For this reason, the improved HHT algorithm based on the damped instantaneous frequency (DIF) is proposed to overcome the shortage of EEMD. Compared with other IF estimation methods, the DIF has strong antinoise ability and high estimation accuracy. The test results of synthetic and real seismic data show that the proposed algorithm is feasible and effective for extracting seismic instantaneous attributes.

     

  • loading
  • Battista, B. M., Knapp, C., McGee, T., et al., 2007. Application of the Empirical Mode Decomposition and Hilbert-Huang Transform to Seismic Reflection Data. Geophysics, 72(2): H29–H37. doi: 10.1190/1.2437700
    Boashash, B., 1992. Estimating and Interpreting the Instantaneous Frequency of a Signal. II. Algorithms and Applications. Proceedings of the IEEE, 80(4): 540–568. doi: 10.1109/5.135378
    Chen, C. S., Jeng, Y., 2011. Nonlinear Data Processing Method for the Signal Enhancement of GPR Data. Journal of Applied Geophysics, 75(1): 113–123. doi: 10.1016/j.jappgeo.2011.06.017
    Chen, C. S., Jeng, Y., 2013. Natural Logarithm Transformed EEMD Instantaneous Attributes of Reflection Data. Journal of Applied Geophysics, 95: 53–65. doi: 10.1016/j.jappgeo.2013.05.006
    Chen, L., Song, H. B., 2009. The Estimation of Instantaneous Frequency of Seismic Signal. Chinese Journal of Geophysics, 52(1): 206–214 (in Chinese with English Abstract)
    Chen, Y. P., Peng, Z. M., He, Z. H., et al., 2013. The Optimal Fractional Gabor Transform Based on the Adaptive Window Function and Its Application. Applied Geophysics, 10(3): 305–313. doi: 10.1007/s11770-013-0392-2
    Cohen, L., 1995. Time-Frequency Analysis: Theory and Applications. Prentice Hall, New York
    Deering, R., Kaiser, J. F., 2005. The Use of a Masking Signal to Improve Empirical Mode Decomposition. IEEE, ICASSP. 485–488 http://ieeexplore.ieee.org/document/1416051
    Flandrin, P., Rilling, G., Goncalves, P., 2004. Empirical Mode Decomposition as a Filter Bank. IEEE Signal Processing Letters, 11(2): 112–114. doi: 10.1109/lsp.2003.821662
    Han, J. J., van der Baan, M. V. D., 2013. Empirical Mode Decomposition for Seismic Time-Frequency Analysis. Geophysics, 78(2): O9–O19. doi: 10.1190/geo2012-0199.1
    Huang, N. E., Shen Z., Long, S. R., 1999. A New View of Nonlinear Water Waves: The Hilbert Spectrum 1. Annual Review of Fluid Mechanics, 31(1): 417–457. doi: 10.1146/annurev.fluid.31.1.417
    Huang, N. E., Shen, Z., Long, S. R., et al., 1998. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193
    Huang, N. E., Wu, M. L. C., Long, S. R., et al., 2003. A Confidence Limit for the Empirical Mode Decomposition and Hilbert Spectral Analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 459(2037): 2317–2345. doi: 10.1098/rspa.2003.1123
    Huang, Y. P., Geng, J. H., Zhong, G. F., et al., 2011. Seismic Attribute Extraction Based on HHT and Its Application in a Marine Carbonate Area. Applied Geophysics, 8(2): 125–133. doi: 10.1007/s11770-010-0279-z
    Li, G. H., 2012. The Research and Application of Signal Analysis Based on HHT and Its Improved Method: [Dissertation]. Chengdu University of Technology, Chengdu (in Chinese with English Abstract)
    Liu, Y. P., Li, Y., Lin, H. B., et al., 2014. An Amplitude- Preserved Time-Frequency Peak Filtering Based on Empirical Mode Decomposition for Seismic Random Noise Reduction. IEEE Geoscience and Remote Sensing Letters, 11(5): 896–900. doi: 10.1109/lgrs.2013.2281202
    Shi, H., Li, G. L., Wang, W., et al., 2011. Random Noise Attenuation Based on Ensemble Empirical Mode Decomposition. Progress in Geophysics, 26(1): 71–78 (in Chinese with English Abstract) http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SEGEAB000027000001002591000001&idtype=cvips&gifs=Yes
    Song, H. B., Bai, Y., Pinheiro, L., et al., 2012. Analysis of Ocean Internal Waves Imaged by Multichannel Reflection Seismics, Using Ensemble Empirical Mode Decomposition. Journal of Geophysics and Engineering, 9(3): 302–311. doi: 10.1088/1742-2132/9/3/302
    Tian, L., Peng, Z. M., 2014. Determining the Optimal Order of Fractional Gabor Transform Based on Kurtosis Maximization and Its Application. Journal of Applied Geophysics, 108: 152–158. doi: 10.1016/j.jappgeo.2014.06.009
    Wang, T., Zhang, M. C., Yu, Q. H., et al., 2012. Comparing the Applications of EMD and EEMD on Time-Frequency Analysis of Seismic Signal. Journal of Applied Geophysics, 83: 29–34. doi: 10.1016/j.jappgeo.2012.05.002
    Wu, A. X., 2012. HHT Time-Frequency Analysis of Digital Seismic Waveform Signals. FSKD, 9: 1802–1806 doi: 10.1109/FSKD.2012.6234242
    Wu, Z. H., Huang, N. E., 2009. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Advances in Adaptive Data Analysis, 1(1): 1–41. doi: 10.1142/s1793536909000047
    Wu, Z., Huang, N. E., 2004. A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 460(2046): 1597–1611. doi: 10.1098/rspa.2003.1221
    Zhao, C. X., 2011. The Research of Time-Frequency Analysis Method Based on Hilbert-Huang Transform: [Dissertation]. China University of Petroleum, Beijing (in Chinese with English Abstract)
    Zhou, Y. H., Chen, W. C., Gao, J. H., et al., 2012. Application of Hilbert-Huang Transform Based Instantaneous Frequency to Seismic Reflection Data. Journal of Applied Geophysics, 82: 68–74. doi: 10.1016/j.jappgeo.2012.04.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(446) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return