Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 4
Aug 2015
Turn off MathJax
Article Contents
Shuangxi Zhang, Chen Zhang, Yu Zhang, Chaoyu Zhang, Lingxi Liu, Mengkui Li. Recovering period of postseismic fluid pressure in fault valve. Journal of Earth Science, 2015, 26(4): 530-536. doi: 10.1007/s12583-015-0561-8
Citation: Shuangxi Zhang, Chen Zhang, Yu Zhang, Chaoyu Zhang, Lingxi Liu, Mengkui Li. Recovering period of postseismic fluid pressure in fault valve. Journal of Earth Science, 2015, 26(4): 530-536. doi: 10.1007/s12583-015-0561-8

Recovering period of postseismic fluid pressure in fault valve

doi: 10.1007/s12583-015-0561-8
More Information
  • Corresponding author: Shuangxi Zhang, shxzhang@sgg.whu.edu.cn
  • Received Date: 30 Aug 2014
  • Accepted Date: 18 Nov 2014
  • Publish Date: 12 Aug 2015
  • The present study aims to reveal the recovering period of the postseismic fluid pressure in fault zone, offering an insight into earthquake recurrence. Numerical modeling is performed based on a 2D simple layered fault-valve model to simulate the fluid activities within the earthquake fault. In order to demonstrate the features of postseismic fluid pressure in natural state, the interference of tectonic movements is not considered. The recovering period of postseismic fluid pressure includes a suddenchanging period and a much longer fluctuating period. Modeling results show that fault permeability and porosity are sensitive parameters and reversely proportional to the recovering period of the fluid pressure in earthquake fault zone. When the permeability reduces from 10-15 to 10-18 m2, the recovering period increases from 400 to 2 000 yrs, correspondently. The upper and lower fluid pressures are separated by the valve seal, causing their fluctuations in opposite tendencies.

     

  • loading
  • Artemieva, I. M., Mooney, W. D., 2001. Thermal Thickness and Evolution of Precambrian Lithosphere: A Global Study. Journal of Geophysical Research, 106(B8): 16387–16414 doi: 10.1029/2000JB900439
    Bai, D. H., Unsworth, M. J., Meju, M. A., et al., 2010. Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 3: 358–362. doi: 10.1038/NGEO830
    Boullier, A. M., Robert, F., 1992. Palaeoseismic Events Recorded in Archaean Gold-Quartz Vein Networks, Val d'Or, Abitibi, Quebec, Canada. Journal of Structural Geology, 14: 161–179 doi: 10.1016/0191-8141(92)90054-Z
    Brace, W. F., 1984. Permeability of Crystalline Rocks: New in Situ Measurements. Journal of Geophysical Research, 89: 4327–4330 doi: 10.1029/JB089iB06p04327
    Byerlee, J. D., 1978. Friction of Rocks. Pure and Applied Geophysics, 116: 615–626 doi: 10.1007/BF00876528
    Chen, J. Y., Yang, X. S., Dang, J. X., et al., 2011. Internal Structure and Permeability of Wenchuan Earthquake Fault. Chinese Journal of Geophysics, 54(7): 1805–1816 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201107015.htm
    Chester, F. M., Evans, J. P., Biegel, R. L., 1993. Internal Structure and Weakening Mechanisms of the San-Andreas Fault. Journal of Geophysical Research, 98 (B1): 771–786 doi: 10.1029/92JB01866
    Dang, J. X., Zhou, Y. S., Han, L., et al., 2012. X-Ray Diffraction Analysis Result of Co-Seismic Fault Gouge in Carbon Mudstone at Outcrops of Bajiaomiao and Shenxigou in Hongkou. Seismology and Geology, 34: 17–27 (in Chinese with English Abstract) http://www.researchgate.net/publication/281665519_X-ray_diffraction_analysis_result_of_co-seismic_fault_gouge_in_carbon_mudstone_at_outcrops_of_Bajiaomiao_and_Shenxigou_in_Hongkou
    Doglioni, C., Barba, S., Carminati, E., et al., 2011. Role of the Brittle-Ductile Transition on Fault Activation. Physics of the Earth and Planetary Interiors, 184: 160–171 doi: 10.1016/j.pepi.2010.11.005
    Doglioni, C., Barba, S., Carminati, E., et al., 2013. Fault on-off Versus Coseismic Fluids Reaction. Geoscience Frontiers, 5: 767–780 https://www.sciencedirect.com/science/article/pii/S1674987113001126
    Du, F., Wen, X. Z., Zhang, P. Z., et al., 2009. Interseismic Deformation across the Longmenshan Fault Zone before the 2008 M 8.0 Wenchuan Earthquake. Chinese Journal of Geophysics, 52(11): 2729–2738 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dqwlxb200911007
    Evans, J. P., Forster, C. B., Goddard, J. V., 1997. Permeability of Fault-Related Rocks, and Implications for Hydraulic Structure of Fault Zones. Journal of Structural Geology, 19: 1393–1404 doi: 10.1016/S0191-8141(97)00057-6
    Fu, B. H., Wang, P., Kong, P., et al., 2008. Preliminary Study of Coseismic Fault Gouge Occurred in the Slip Zone of the Wenchuan Ms 8.0 Earthquake and Its Tectonic Implications. Acta Petrologica Sinica, 24(10): 2237–2243 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200810005.htm
    Fulton, P. M., Harris, R. N., Saffer, D. M., et al., 2010. Does Hydrologic Circulation Mask Frictional Heat on Faults after Large Earthquakes? Journal of Geophysical Research, 115: B09402. doi: 10.1029/2009JB007103
    Gratier, J. P., Favreau, P., Renard, F., 2003. Modeling Fluid Transfer along California Faults when Integrating Pressure Solution Crack Sealing and Compaction Processes. Journal of Geophysical Research, 108(B2): 2104. doi: 10.1029/2001JB000380
    Hardebeck, J. L., Hauksson, E., 1999. Role of Fluids in Faulting Inferred from Stress Field Signatures. Science, 285(5425): 236–239 doi: 10.1126/science.285.5425.236
    Healy, J. H., Rubey, W. W., Griggs, D. T., et al., 1968. The Denver Earthquakes. Science, 161: 1301–1310 doi: 10.1126/science.161.3848.1301
    Holcomb, D. J., Olsson, W. A., 2003. Compaction Localization and Fluid Flow. Journal of Geophysical Research, 108(B6): 2290 doi: 10.1029/2001JB000813/citedby
    Lachenbruch, A. H., 1970. Crustal Temperature and Heat Production: Implications of the Linear Heat Flow Relation. Journal of Geophysical Research, 75: 3291–3300 doi: 10.1029/JB075i017p03291
    Lai, G. J., Huang, F. Q., Ge, H. K., 2011. Apparent Permeability Variation of Underground Water Aquifer Induced by an Earthquake: A Case of the Zhouzhi Well and the 2008 Wenchuan Earthquake. Earthquake Science, 24: 437–445 doi: 10.1007/s11589-011-0806-2
    Marone, C., Raleigh, C. B., Scholz, C. H., 1990. Frictional Behavior and Constitutive Modeling of Simulated Fault Gouge. Journal of Geophysical Research, 95: 7007–7025 doi: 10.1029/JB095iB05p07007
    Miller, S. A., Nur, A., Olgaard, D. L., 1996. Earthquakes as a Coupled Shear Stress-High Pore Pressure Dynamical System. Geophysical Research Letters, 23(2): 197–200 doi: 10.1029/95GL03178
    Miller, S. A., 2002. Inferring Fault Strength from Earthquake Rupture Properties and the Tectonic Implications of High Pore Pressure Faulting. Earth Planets Space, 54: 1173–1179 doi: 10.1186/BF03353318
    Miller, S. A., Collettini, C., Chiaraluce, L., et al., 2004. Aftershocks Driven by a High-Pressure CO2 Source at Depth. Nature, 427: 724–727 doi: 10.1038/nature02251
    Morrow, C. A., Lockner, D. A., Hickman, S., et al., 1994. Effects of Lithology and Depth on the Permeability of Core Samples form the Kola and KTB Drill Holes. Journal of Geophysical Research, 99: 7263–7274 doi: 10.1029/93JB03458
    Nabelek, J., Suarez, G., 1989. The 1983 Goodnow Earthquake in the Central Adirondacks, New York: Rupture of a Simple, Circular Crack. Bulletin of the Seismological Society of America, 79: 1762–1777 http://www.researchgate.net/publication/279621632_The_1983_Goodnow_earthquake_in_the_central_Adirondacks_New_York_rupture_of_a_simple_circular_crack
    Nur, A., Booker, J. R., 1972. Aftershocks Caused by Pore Fluid Flow? Science, 175(4024): 885–887 doi: 10.1126/science.175.4024.885
    Peach, C. J., Spiers, C. J., 1996. Influence of Crystal Plastic Deformation on Dilatancy and Permeability Development in Synthetic Salt Rock. Tectonophysics, 256(1): 101–128 http://www.sciencedirect.com/science/article/pii/0040195195001700
    Poty, B., Stadler, H. A., Weisbrod, A. M., 1974. Fluid Inclusions Studies in Quartz from Fissures of Western and Central Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 54: 717–752 http://www.researchgate.net/publication/285190427_Fluid_inclusions_studies_in_quartz_from_fissures_of_Western_and_Central_Alps
    Pulinets, S. A., Ouzounov, D., Karelin, A. V., et al., 2006. The Physical Nature of Thermal Anomalies Observed before Strong Earthquakes. Physics and Chemistry of the Earth, 31: 143–153 doi: 10.1016/j.pce.2006.02.042
    Qiang, Z. J., Xu, X. D., Dian, C. G., 1991. Thermal Infrared Anomaly Precursor of Impending Earthquakes. Chinese Science Bulletin, 36(4): 319–323 http://www.cqvip.com/QK/86894X/199104/1005289479.html
    Raleigh, C. B., Healy, J. H., Bredehoeft, J. D., 1976. An Experiment in Earthquake Control at Rangely, Colorado. Science, 191: 1230–1237 doi: 10.1126/science.191.4233.1230
    Rojstaczer, S. A., Ingebritsen, S. E., Hayba, D. O., 2008. Permeability of Continental Crust Influenced by Internal and External Forcing. Geofluids, 8: 128–139 doi: 10.1111/j.1468-8123.2008.00211.x
    Sheldon, H. A., Ord, A., 2005. Evolution of Porosity, Permeability and Fluid Pressure in Dilatant Faults Post-Failure: Implications for Fluid Flow and Mineralization. Geofluids, 5: 272–288 doi: 10.1111/j.1468-8123.2005.00120.x
    Shimazaki, K., Nakata, T., 1980. Time-Predictable Model for Large Earthquakes. Geophysical Research Letters, 7: 279–282 doi: 10.1029/GL007i004p00279
    Sleep, N. H., Blanpied, M. L., 1992. Creep, Compaction and the Weak Rheology of Major Faults. Nature, 359(6397): 687–692 doi: 10.1038/359687a0
    Sleep, N. H., Blanpied, M. L., 1994. Ductile Creep and Compaction: A Mechanism for Transiently Increasing Fluid Pressure in Mostly Sealed Fault Zones. Pure and Applied Geophysics, 143: 9–40 doi: 10.1007/BF00874322
    Sibson, R. H., 1981. Fluid Flow Accompanying Faulting: Field Evidence and Models. In: Simpson, D. W., Richards, P. G., eds., Earthquake Prediction. American Geophysical Union, SanFransisco. 593–603
    Sibson, R. H., 1992. Implications of Fault-Valve Behavior for Rupture Nucleation and Recurrence. Tectonophysics, 211: 283–293 doi: 10.1016/0040-1951(92)90065-E
    Voss, C. I., Provost, A. M., 2010. A Model for Saturated- Unsaturated, Variable-Density Ground Water Flow with Solute or Energy Transport. Water-Resources Investigations Report, 02-4231, Reston, Virginia
    Wetmiller, R. J., Adams, J., Anglin, F. M., et al., 1984. Aftershock Sequences of the 1982 Miramichi, New Brunswick, Earthquakes. Bulletin of the Seismological Society of America, 74: 621–653 http://www.researchgate.net/publication/284499883_Aftershock_sequences_of_the_1982_Miramichi_New_Brunswick_earthquakes
    Yang, G., Li, H. B., Zhang, W., et al., 2012. Features of the Anxian-Guanxian Fault Zone in Longmenshan Area of Sichuan Province: A Case Study of No. 3 Hole of Wenchuan Earthquake Fault Scientific Drilling (WFSD-3). Geological Bulletin of China, 31(8): 1219–1232 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201208002.htm
    Zoback, M. D., Byerlee, J. D., 1975. The Effect of Microcrack Dilatancy on the Permeability of Westerly Granite. Journal of Geophysical Research, 80(5): 752–755 doi: 10.1029/JB080i005p00752
    Zoback, M. D., 1999. Critically-Stressed Faults, Deep Crustal Fluid Flow and Dynamic Constraints on Hydrocarbon Migration. Workshop on Fluids and Fractures in the Lithosphere. Univ. Nancy, Nancy
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(960) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return