Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 4
Aug 2015
Turn off MathJax
Article Contents
Bo Feng, Huazhong Wang. Data-domain wave equation reflection traveltime tomography. Journal of Earth Science, 2015, 26(4): 487-494. doi: 10.1007/s12583-015-0562-7
Citation: Bo Feng, Huazhong Wang. Data-domain wave equation reflection traveltime tomography. Journal of Earth Science, 2015, 26(4): 487-494. doi: 10.1007/s12583-015-0562-7

Data-domain wave equation reflection traveltime tomography

doi: 10.1007/s12583-015-0562-7
More Information
  • Corresponding author: Bo Feng,
  • Received Date: 31 Aug 2014
  • Accepted Date: 11 Jan 2015
  • Publish Date: 12 Aug 2015
  • Estimation of an accurate macro velocity model plays an important role in seismic imaging and model parameter inversion. Full waveform inversion (FWI) is the classical data-domain inversion method. However, the misfit function of FWI is highly nonlinear, and the local optimization cannot prevent convergence of the misfit function toward local minima. To converge to the global minimum, FWI needs a good initial model or reliable low frequency component and long offset data. In this article, we present a wave-equation-based reflection traveltime tomography (WERTT) method, which can provide a good background model (initial model) for FWI and (least-square) pre-stack depth migration (LS-PSDM). First, the velocity model is decomposed into a low-wavenumber component (background velocity) and a high-wavenumber component (reflectivity). Second, the primary reflection wave is predicted by wave-equation demigration, and the reflection traveltime is calculated by an automatic picking method. Finally, the misfit function of the l2-norm of the reflection traveltime residuals is minimized by a gradient-based method. Numerical tests show that the proposed method can invert a good background model, which can be used as an initial model for LS-PSDM or FWI.


  • loading
  • Bozdağ, E., Trampert, J., Tromp, J., 2011. Misfit Functions for Full Waveform Inversion Based on Instantaneous Phase and Envelope Measurements. Geophysical Journal International, 185(2): 845–870. doi: 10.1111/j.1365-246x.2011.04970.x
    Clément, F., Chavent, G., Gómez, S., 2001. Migration-Based Traveltime Waveform Inversion of 2-D Simple Structures: A Synthetic Example. Geophysics, 66(3): 845–860. doi: 10.1190/1.1444974
    de Hoop, M. V. D., van der Hilst, R. D. V. D., 2005. On Sensitivity Kernels for 'Wave-Equation' Transmission Tomography. Geophysical Journal International, 160(2): 621–633. doi: 10.1111/j.1365-246x.2004.02509.x
    Di Nicola-Carena, E., Shipp, R., Singh, S., 1999. Fast Traveltime Tomography and Analysis of Real Data Using a Semi-automated Picking Procedure. SEG Technical Program Expanded Abstracts 1999, 1414–1417. doi: 10.1190/1.1820781
    Liu, T., 2014. The Study of Diffraction Separation and Imaging: [Dissertation]. Tongji University, Shanghai (in Chinese with English Abstract)
    Luo, S., Hale, D., 2013. Separating Traveltimes and Amplitudes in Waveform Inversion. SEG Technical Program Expanded Abstracts 2013, 61: 27–34. doi: 10.1190/segam2013-1284.1
    Luo, Y., Schuster, G. T., 1991. Wave-Equation Traveltime Inversion. Geophysics, 56(5): 645–653. doi: 10.1190/1.1443081
    Ma, Y., Hale, D., 2013. Wave-Equation Reflection Traveltime Inversion with Dynamic Warping and Full-Waveform Inversion. Geophysics, 78(6): R223. doi: 10.1190/geo2013-0004.1
    Pratt, R. G., 1999. Seismic Waveform Inversion in the Frequency Domain, Part 1: Theory and Verification in a Physical Scale Model. Geophysics, 64(3): 888–901. doi: 10.1190/1.1444597
    Tarantola, A., 1984. Inversion of Seismic Reflection Data in the Acoustic Approximation. Geophysics, 49(8): 1259–1266. doi: 10.1190/1.1441754
    van Leeuwen, T., Mulder, W. A., 2010. A Correlation-Based Misfit Criterion for Wave-Equation Traveltime Tomography. Geophysical Journal International, 182(3): 1383–1394. doi: 10.1111/j.1365-246x.2010.04681.x
    Virieux, J., Operto, S., 2009. An Overview of Full-Waveform Inversion in Exploration Geophysics. Geophysics, 74(6): WCC1–WCC26. doi: 10.1190/1.3238367
    Wang, H., Singh, S., Audebert, F., et al., 2014. Inversion of Seismic Refraction and Reflection Data for Long-Wavelength Velocity Model. Proceedings 76th EAGE Conference and Exhibition 2014, 80: We E106 09. doi: 10.3997/2214-4609.20141088
    Xu, S., Wang, D., Chen, F., et al., 2012. Full Waveform Inversion for Reflected Seismic Data. 74th EAGE Conference and Exhibition Incorporating EUROPEC 2012, W024. doi: 10.3997/2214-4609.20148725
    Yao, G., Warner, M., Silverton, A., 2014. Reflection FWI for both Reflectivity and Background Velocity. Proceedings 76th EAGE Conference and Exhibition 2014, We E106 10. doi: 10.3997/2214-4609.20141089
    Zhou, H. B., Amundsen, L., Zhang, G. Q., 2012. Fundamental Issues in Full Waveform Inversion. SEG Technical Program Expanded Abstracts 2012, 1–5. doi: 10.1190/segam2012-0878.1
    Zhou, W., Brossier, R., Operto, S., et al., 2014. Combining Diving and Reflected Waves for Velocity Model Building by Waveform Inversion. Proceedings 76th EAGE Conference and Exhibition 2014, 63: We E106 15. doi: 10.3997/2214-4609.20141094
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views(427) PDF downloads(45) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint