Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 4
Aug 2015
Turn off MathJax
Article Contents
Jin Zhang, Huaishan Liu, Siyou Tong, Lei Xing, Xiangpeng Chen, Chaoguang Su. Estimation of elastic parameters using two-term fatti elastic impedance inversion. Journal of Earth Science, 2015, 26(4): 556-566. doi: 10.1007/s12583-015-0564-5
Citation: Jin Zhang, Huaishan Liu, Siyou Tong, Lei Xing, Xiangpeng Chen, Chaoguang Su. Estimation of elastic parameters using two-term fatti elastic impedance inversion. Journal of Earth Science, 2015, 26(4): 556-566. doi: 10.1007/s12583-015-0564-5

Estimation of elastic parameters using two-term fatti elastic impedance inversion

doi: 10.1007/s12583-015-0564-5
More Information
  • Corresponding author: Lei Xing, xingleiouc@ouc.edu.cn
  • Received Date: 01 Sep 2014
  • Accepted Date: 05 Jan 2015
  • Publish Date: 12 Aug 2015
  • Elastic impedance (EI) inversion has been widely used in industry to estimate kinds of elastic parameters to distinguish lithology or even fluid. However, it is found that conventional three-term elastic impedance formula is unstable even with slight random noise in seismic data, due to the ill-conditioned coefficient matrix of elastic parameters. We presented two-term Fatti elastic impedance inversion method, which is more robust and accurate than conventional three-term elastic impedance inversion. In our method, density is ignored to increase the robustness of inversion matrix. Besides, P-impedance and S-impedance, which are less sensitive to random noise, are inverted instead of VP and VS in conventional three-term elastic impedance. To make the inversion more stable, we defined the range of K value as a constraint. Synthetic tests claim that this method can obtain promising results with low SNR (signal noise ratio) seismic data. With the application of the method in a 2D line data, we achieved λρ, μρ and VP/VS sections, which matched the drilled well perfectly, indicating the potential of the method in reservoir prediction.

     

  • loading
  • Aki, K., Richards, P. G., 1980. Quantitative Seismology, 2nd Ed. . W. H. Freeman and Company, San Francisco. 557
    Bruce, V., VerWest, B., Masters, R., et al., 2000. Elastic Impedance Inversion. Expanded Abstracts of 70th SEG Mtg., Calgary. 1580-1582
    Cambois, G., 2000. AVO Inversion and Elastic Impedance. SEG Technical Program Expanded Abstracts 2000, 142-145. doi: 10.1190/1.1815671
    Castagna, J. P., Batzle, M. L., Eastwood, R. L., 1985. Relationships between Compressional-Wave and Shear-Wave Velocities in Clastic Silicate Rocks. Geophysics, 50(4): 571-581. doi: 10.1190/1.1441933
    Connolly, P., 1999. Elastic Impedance. The Leading Edge, 18(4): 438-452. doi: 10.1190/1.1438307
    Downton, J. E., 2005. Seismic Parameter Estimation from AVO Inversion: [Dissertation]. University of Calgary, Calgary
    Fatti, J. L., Smith, G. C., Vail, P. J., et al., 1994. Detection of Gas in Sandstone Reservoirs Using AVO Analysis: A 3-D Seismic Case History Using the Geostack Technique. Geophysics, 59(9): 1362-1376. doi: 10.1190/1.1443695
    Gardner, G. H. F., Gardner, L. W., Gregory, A. R., 1974. Formation Velocity and Density—The Diagnostic Basics for Stratigraphic Traps. Geophysics, 39(6): 770-780. doi: 10.1190/1.1440465
    Greenberg, M. L., Castagna, J. P., 1992. Shear-Wave Velocity Estimation in Porous Rocks: Theoretical Formulation, Preliminary Verification and Applications. Geophysical Prospecting, 40(2): 195-209. doi: 10.1111/j.1365-2478.1992.tb00371.x
    Han, D., Nur, A., Morgan, D., 1986. Effects of Porosity and Clay Content on Wave Velocities in Sandstones. Geophysics, 51(11): 2093-2107. doi: 10.1190/1.1442062
    Lu, S. M., McMechan, G. A., 2004. Elastic Impedance Inversion of Multichannel Seismic Data from Unconsolidated Sediments Containing Gas Hydrate and Free Gas. Geophysics, 69(1): 164-179. doi: 10.1190/1.1649385
    Mallick, S., 2001. AVO and Elastic Impedance. The Leading Edge, 20(10): 1094-1104. doi: 10.1190/1.1487239
    Mallick, S., 2007. Amplitude-Variation-With-Offset, Elastic- Impedence, and Wave-Equation Synthetics—A Modeling Study. Geophysics, 72(1): C1-C7. doi: 10.1190/1.2387108
    Mallick, S., Huang, X. R., Lauve, J., et al., 2000. Hybrid Seismic Inversion: A Reconnaissance Tool for Deepwater Exploration. The Leading Edge, 19(11): 1230-1237. doi: 10.1190/1.1438512
    Ostrander, W. J., 1984. Plane-Wave Reflection Coefficients for Gas Sands at Nonnormal Angles of Incidence. Geophysics, 49(10): 1637-1648. doi: 10.1190/1.1441571
    Santos, L. T., Tygel, M., Ramos, A. C. B., 2002, Reflection Impedance. 64th Conference European Association of Geoscientists and Engineers, Expanded Abstracts, Florence. 182
    Tsuneyama, F., Mavko, G., 2007. Elastic-Impedance Analysis Constrained by Rock-Physics Bounds. Geophysical Prospecting, 55(3): 289-306. doi: 10.1111/j.1365-2478.2007.00616.x
    Wang, B., Yin, X., Zhang, F., et al., 2008. Elastic Impedance Equation Based on Fatti Approximation and Inversion. Progress in Geophysics, 23: 192-197 (in Chinese with English Abstract)
    Whitcombe, D. N., 2002. Elastic Impedance Normalization. Geophysics, 67(1): 60-62. doi: 10.1190/1.1451331
    Whitcombe, D. N., Connolly, P. A., Reagan, R. L., et al., 2002. Extended Elastic Impedance for Fluid and Lithology Prediction. Geophysics, 67(1): 63-67. doi: 10.1190/1.1451337
    Xu, S. Y., White, R. E., 1996. A Physical Model for Shear-Wave Velocity Prediction. Geophysical Prospecting, 44(4): 687-717. doi: 10.1111/j.1365-2478.1996.tb00170.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views(559) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return