Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 4
Aug 2015
Turn off MathJax
Article Contents
Taikun Shi, Jianzhong Zhang, Zhonglai Huang, Changkun Jin. A layer-stripping method for 3D near-surface velocity model building using seismic first-arrival times. Journal of Earth Science, 2015, 26(4): 502-507. doi: 10.1007/s12583-015-0569-0
Citation: Taikun Shi, Jianzhong Zhang, Zhonglai Huang, Changkun Jin. A layer-stripping method for 3D near-surface velocity model building using seismic first-arrival times. Journal of Earth Science, 2015, 26(4): 502-507. doi: 10.1007/s12583-015-0569-0

A layer-stripping method for 3D near-surface velocity model building using seismic first-arrival times

doi: 10.1007/s12583-015-0569-0
More Information
  • Corresponding author: Jianzhong Zhang, zhangjz@ouc.edu.cn
  • Received Date: 05 Sep 2014
  • Accepted Date: 31 Dec 2014
  • Publish Date: 12 Aug 2015
  • In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assumed to be stratified into thin layers, and the velocity of each layer varies linearly with depth. The thickness and velocity of the top layer are estimated using minimum-offset first-arrival data in a CMP gather. Then the top layer is stripped and the second layer becomes a new top layer. After removing the effect of the top layer from the former first-arrival data, the new first-arrival data are obtained and then used to estimate the parameters of the second layer. In this manner, the velocity model, being regarded as that at a CMP location, is built layer-by-layer from the top to the bottom. A 3D near-surface velocity model is then formed using the velocity models at all CMP locations. The tests on synthetic and observed seismic data show that the layer-stripping method can be used to build good near-surface velocity models for static correction, and its computation speed is approximately hundred times faster than that of grid tomography.

     

  • loading
  • Aki, K., Richards, P. G., 2002. Quantitative Seismology 2nd. University Science Books, Sausalito. 414–422
    Babacan, A. E., Gelisli, K., Ersoy, H., 2014. Seismic Tomography and Surface Wave Analysis Based on Methodologies on Evaluation of Geotechnical Properties of Volcanic Rocks: A Case Study. Journal of Earth Science, 25(2): 348–356. doi: 10.1007/s12583-014-0417-7
    Diebold, J. B., Stoffa, P. L., 1981. The Traveltime Equation, tau-p Mapping, and Inversion of Common Midpoint Data. Geophysics, 46(3): 238–254. doi: 10.1190/1.1441196
    Geoltrain, S., Brac, J., 1993. Can We Image Complex Structures with First-Arrival Traveltime? Geophysics, 58(4): 564–575. doi: 10.1190/1.1443439
    Gerver, M., Markushevich, V., 1966. Determination of a Seismic Wave Velocity from the Travel-Time Curve. Geophysical Journal Royal Astronomical Society, 11: 165–173. doi: 10.1111/j.1365-246X.1966.tb03498.x
    Gibson, B. S., Odegard, M. E., Sutton, G. H., 1979. Nonlinear Least-Squares Inversion of Traveltime Data for a Linear Velocity-Depth Relationship. Geophysics, 44(2): 185–194. doi: 10.1190/1.1440960
    Huang, Y. Q., Zhang, J. Z., Liu, Q. H., 2011. Three-Dimensional GPR Ray Tracing Based on Wavefront Expansion with Irregular Cells. IEEE Transactions on Geoscience and Remote Sensing, 49(2): 679–687. doi: 10.1109/tgrs.2010.2061856
    Nowack, R. L., 1990. Tomography and the Herglotz-Wiechert Inverse Formulation. Pure and Applied Geophysics, 133(2): 305–315. doi: 10.1007/bf00877165
    Phillips, W. S., Fehler, M. C., 1991. Traveltime Tomography: A Comparison of Popular Methods. Geophysics, 56(10): 1639–1649. doi: 10.1190/1.1442974
    Pugin, A., Pullan, S. E., 2000. First-Arrival Alignment Static Corrections Applied to Shallow Seismic Reflection Data. Journal of Environmental and Engineering Geophysics, 5(1): 7–15. doi: 10.4133/jeeg5.1.7
    Rhül, T., Lüschen, E., 1990. Inversion of First-Arrival Traveltime Data of Deep Seismic Reflection Profiles. Geophysical Prospecting, 38(3): 247–266. doi: 10.1111/j.1365-2478.1990.tb01844.x
    Schultz, P. S., 1982. A Method for Direct Estimation of Interval Velocities. Geophysics, 47(12): 1657–1671. doi: 10.1190/1.1441315
    Simmons, J. L., Backus, M. M., 1992. Linearized Tomographic Inversion of First-Arrival Times. Geophysics, 57(11): 1482–1492. doi: 10.1190/1.1443215
    Slotnick, M. M., 1950. A Graphical Method for the Interpretation of Refraction Profile Data. Geophysics, 15: 163–180. doi: 10.1190/1.1437587
    Zhang, J., 2009. A Modified Reconstruction Algorithm for Fresnel Volume Tomography. Computers & Geosciences, 35(12): 2365–2367. doi: 10.1016/j.cageo.2009.06.002
    Zhang, J. Z., Chen, S. J., Xu, C. W., 2004. A Method of Shortest Path Raytracing with Dynamic Networks. Chinese Journal of Geophysics, 47(5): 1013–1018. doi: 10.1002/cjg2.580
    Zhang, J. Z., Huang, Y. Q., Song, L. P., et al., 2011. Fast and Accurate 3-D Ray Tracing Using Bilinear Traveltime Interpolation and the Wave Front Group Marching. Geophysical Journal International, 184(3): 1327–1340. doi: 10.1111/j.1365-246x.2010.04909.x
    Zhang, J. Z., Shi, T. K., Zhao, Y., et al., 2014. Static Corrections in Mountainous Areas Using Fresnel-Wavepath Tomography. Journal of Applied Geophysics, 111: 242–249. doi: 10.1016/j.jappgeo.2014.10.006
    Zhu, X. S., Gao, R., Li, Q. S., et al., 2014. Static Corrections Methods in the Processing of Deep Reflection Seismic Data. Journal of Earth Science, 25(2): 299–308. doi: 10.1007/s12583-014-0422-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(692) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return