Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 4
Aug 2015
Turn off MathJax
Article Contents
Majid Abrehdary, Lars E. Sjöberg, Mohammad Bagherbandi. Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model. Journal of Earth Science, 2015, 26(4): 607-616. doi: 10.1007/s12583-015-0571-6
Citation: Majid Abrehdary, Lars E. Sjöberg, Mohammad Bagherbandi. Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model. Journal of Earth Science, 2015, 26(4): 607-616. doi: 10.1007/s12583-015-0571-6

Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model

doi: 10.1007/s12583-015-0571-6
More Information
  • Corresponding author: Majid Abrehdary, majidab@kth.se
  • Received Date: 13 Aug 2014
  • Accepted Date: 10 Feb 2015
  • Publish Date: 12 Aug 2015
  • According to Vening Meinesz-Moritz (VMM) global inverse isostatic problem, either the Moho density contrast (crust-mantle density contrast) or the Moho geometry can be estimated by solving a non-linear Fredholm integral equation of the first kind. Here solutions to the two Moho parameters are presented by combining the global geopotential model (GOCO-03S), topography (DTM 2006) and a seismic crust model, the latter being the recent digital global crustal model (CRUST1.0) with a resolution of 1º×1º. The numerical results show that the estimated Moho density contrast varies from 21 to 637 kg/m3, with a global average of 321 kg/m3, and the estimated Moho depth varies from 6 to 86 km with a global average of 24 km. Comparing the Moho density contrasts estimated using our leastsquares method and those derived by the CRUST1.0, CRUST2.0, and PREM models shows that our estimate agrees fairly well with CRUST1.0 model and rather poor with other models. The estimated Moho depths by our least-squares method and the CRUST1.0 model agree to 4.8 km in RMS and with the GEMMA1.0 based model to 6.3 km.

     

  • loading
  • Amante, C., Eakins, B. W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA, Technical Memorandum, NESDIS, NGDC-24. 19
    Bagherbandi, M., 2011. An Isostatic Earth Crustal Model and Its Application: [Dissertation]. Royal of Institute of Technology, Stockholm. 65-72
    Bagherbandi, M., Sjöberg, L. E., 2012. Non-Isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia. Physics of the Earth and Planetary Interiors, 200/201: 37-44. doi: 10.1016/j.pepi.2012.04.001
    Bagherbandi, M., Sjöberg, L. E., 2013. Improving Gravimetric-Isostatic Models of Crustal Depth by Correcting for Non-Isostatic Effects and Using CRUST2.0. Earth-Science Reviews, 117: 29-39. doi: 10.1016/j.earscirev.2012.12.002
    Bagherbandi, M., Tenzer, R., Sjöberg, L. E., et al., 2013. Improved Global Crustal Thickness Modeling Based on the VMM Isostatic Model and Non-Isostatic Gravity Correction. Journal of Geodynamics, 66: 25-37. doi: 10.1016/j.jog.2013.01.002
    Bassin, C., Laske, G., Masters, T. G., 2000. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 81: F897 http://ci.nii.ac.jp/naid/10015303905
    Bouman, J., Ebbing, J., Meekes, S., et al., 2015. GOCE Gravity Gradient Data for Lithospheric Modeling. International Journal of Applied Earth Observation and Geoinformation, 35: 16-30. doi: 10.1016/j.jag.2013.11.001
    Čadek, O., Martinec, Z., 1991. Spherical Harmonic Expansion of the Earth's Crustal Thickness up to Degree and Order 30. Studia Geophysica et Geodaetica, 35(3): 151-165. doi: 10.1007/bf01614063
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297-356. doi: 10.1016/0031-9201(81)90046-7
    Heiskanen, W. A., Moritz, H., 1967. Physical Geodesy. W. H. Freeman, New York. 130-133
    Laske, G., Masters, G., Reif, C., 2000. A New Global Crustal Model at 2×2 Degrees (CRUST2.0). http://igppweb.ucsd.edu/~gabi/crust2.html
    Laske, G., Masters, G., Ma, Z., et al., 2013. A New Global Crustal Model at 1×1 Degrees (CRUST1.0), http://igppweb.ucsd.edu/~gabi/crust1.html
    Lebedev, S., Adam, J. M. C., Meier, T., 2013. Mapping the Moho with Seismic Surface Waves: A Review, Resolution Analysis, and Recommended Inversion Strategies. Tectonophysics, 609: 377-394. doi: 10.1016/j.tecto.2012.12.030
    Mayer-Guerr, T., Rieser, D., Höck, E., et al., 2012. The New Combined Satellite only Model GOCO03s. Abstract, GGHS2012, Venice
    Meier, U., Curtis, A., Trampert, J., 2007. Global Crustal Thickness from Neural Network Inversion of Surface Wave Data. Geophysical Journal International, 169(2): 706-722. doi: 10.1111/j.1365-246x.2007.03373.x
    Moritz, H., 1990. The Figure of the Earth. H. Wichmann, Karlsruhe
    Moritz, H., 2000. Geodetic Reference System 1980. J. Geod. , 74: 128-162 doi: 10.1007/s001900050278
    Pasyanos, M., Masters, G., Laske, G., et al., 2012. Litho1.0-An Updated Crust and Lithospheric Model of the Earth Developed Using Multiple Data Constraints. Fall Meeting, AGU, San Francisco. Dec. 3-7, 2012
    Pavlis, N. A., Simon, A. H., Kenyon, S. C., et al. ., 2012. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117: B04406
    Pavlis, N. K., Saleh, J., 2005. Error Propagation with Geographic Specificity for very High Degree Geopotential Models. International Association of Geodesy Symposia, 149-154. doi: 10.1007/3-540-26932-0_26
    Reguzzoni, M., Sampietro, D., 2015. GEMMA: An Earth Crustal Model Based on GOCE Satellite Data. International Journal of Applied Earth Observation and Geoinformation, 35: 31-43. doi: 10.1016/j.jag.2014.04.002
    Reguzzoni, M., Sampietro, D., Sanso, F., 2013. Global Moho from the Combination of the CRUST2.0 Model and GOCE Data. Geophysical Journal International, 195(1): 222-237. doi: 10.1093/gji/ggt247
    Sampietro, D., Reguzzoni, M., Braitenberg, C., 2013. The GOCE Estimated Moho beneath the Tibetan Plateau and Himalaya. International Association of Geodesy Symposia, 22: 391-397. doi: 10.1007/978-3-642-37222-3_52
    Shapiro, N. M., Ritzwoller, M. H., 2002. Monte-Carlo Inversion for a Global Shear-Velocity Model of the Crust and Upper Mantle. Geophysical Journal International, 151(1): 88-105. doi: 10.1046/j.1365-246x.2002.01742.x
    Sjöberg, L. E., 2009. Solving Vening Meinesz-Moritz Inverse Problem in Isostasy. Geophysical Journal International, 179(3): 1527-1536. doi: 10.1111/j.1365-246x.2009.04397.x
    Sjöberg, L., Bagherbandi, M., 2011. A Method of Estimating the Moho Density Contrast with a Tentative Application of EGM08 and CRUST2.0. Acta Geophysica, 59(3): 502-525. doi: 10.2478/s11600-011-0004-6
    Tenzer, R., Chen, W., Tsoulis, D., et al., 2014. Analysis of the Refined CRUST1.0 Crustal Model and Its Gravity Field. Surveys in Geophysics, 36(1): 139-165 doi: 10.1007/s10712-014-9299-6
    van der Pluijm, B. A., Marshak, S., 2004. Earth Structure: An Introduction to Structural Geology and Tectonics. 2nd Ed. W. W. Norton, New York
    Vening Meinesz, F. A., 1931. Une Nouvelle Méthode Pour La Réduction Isostatique Régionale de L'intensité de La Pesanteur. Bulletin Géodésique, 29(1): 33-51. doi:10.1007/bf03030038 (in French)
    Watts, A. B., 2001. Isostasy and Flexure of the Lithosphere. Cambridge, New York. 458
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(592) PDF downloads(185) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return