Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 4
Aug 2015
Turn off MathJax
Article Contents
Tao Zhang, Xianguo Zhang, Chengyan Lin, Jingfeng Yu, Shouxiu Zhang. Seismic sedimentology interpretation method of meandering fluvial reservoir: From model to real data. Journal of Earth Science, 2015, 26(4): 598-606. doi: 10.1007/s12583-015-0572-5
Citation: Tao Zhang, Xianguo Zhang, Chengyan Lin, Jingfeng Yu, Shouxiu Zhang. Seismic sedimentology interpretation method of meandering fluvial reservoir: From model to real data. Journal of Earth Science, 2015, 26(4): 598-606. doi: 10.1007/s12583-015-0572-5

Seismic sedimentology interpretation method of meandering fluvial reservoir: From model to real data

doi: 10.1007/s12583-015-0572-5
More Information
  • Corresponding author: Xianguo Zhang,
  • Received Date: 05 Sep 2014
  • Accepted Date: 14 Jan 2015
  • Publish Date: 12 Aug 2015
  • Reservoir architecture of meandering river deposition is complex and traditional seismic facies interpretation method cannot characterize it when layer thickness is under seismic vertical resolution. In this study, a seismic sedimentology interpretation method and workflow for point bar characterization is built. Firstly, the influences of seismic frequency and sandstone thickness on seismic reflection are analyzed by outcrop detection with ground penetrating radar (GPR) and seismic forward modeling. It is found that (1) sandstone thickness can influence seismic reflection of point bar architecture. With the increasing of sandstone thickness from 1/4 wavelength (λ) to λ/2, seismic reflection geometries various from ambiguous reflection, "V" type reflection to "X" type reflection; (2) seismic frequency can influence reservoirs' seismic reflection geometry. Seismic events follow inclined lateral aggradation surfaces, which is isochronic depositional boundaries, in high frequency seismic data while the events extend along lithologic surfaces, which are level, in low frequency data. Secondly, strata slice interpretation method for thin layer depositional characterization is discussed with seismic forward modeling. Lastly, a method and workflow based on the above study is built which includes seismic frequency analysis, 90º phasing, stratal slicing and integrated interpretation of slice and seismic profile. This method is used in real data study in Tiger shoal, the Gulf of Mexico. Two episodes of meandering fluvial deposition is recognized in the study layer. Sandstone of the lower unit, which is formed in low base level stage, distributes limited. Sandstone distribution dimension and channel sinuosity become larger in the upper layer, which is high base level deposition.


  • loading
  • Carter, D. C., 2003. 3-D Seismic Geomorphology: Insights into Fluvial Reservoir Deposition and Performance, Widuri Field, Java Sea. AAPG Bulletin, 87(6): 909-934. doi: 10.1306/01300300183
    Dong, Y. L., Zhu, X. M., Zeng, H. L., et al., 2008. Study of Seismic Sedimentology in Qi'nan Sag. Journal of China University of Petroleum, 32(4): 7-11 (in Chinese with English Abstract)
    Eakin, H. M., 1910. The Influence of the Earth's Rotation Upon the Lateral Erosion of Streams. The Journal of Geology, 18(5): 435-447. doi: 10.1086/621757
    Galloway, W. E., 1989. Genetic Stratigraphic Sequences in Basin Analysis Ⅱ: Application to Northwest Gulf of Mexico Cenozoic Basin. AAPG Bulletin, 73: 143-154. doi: 10.1306/703c9afa-1707-11d7-8645000102c1865d
    Hart, B. S., 2008. Channel Detection in 3-D Seismic Data Using Sweetness. AAPG Bulletin, 92(6): 733-742. doi: 10.1306/02050807127
    Hentz, T. F., Zeng, H. L., 2003. High-Frequency Miocene Sequence Stratigraphy, Offshore Louisiana: Cycle Framework and Influence on Production Distribution in a Mature Shelf Province. AAPG Bulletin, 87(2): 197-230. doi: 10.1306/09240201054
    Jefferson, M. S. W., 1902. Limiting Width of Meander Belts. National Geographic Magazine, Washington D. C. . 373-384
    Langbein, W. B., Leopold, L. B., 1966. River Meanders— Theory of Minimum Variance. Geological Survey Professional Paper 422-H, United States Government Printing Office, Washington D.C.
    Lee, K., Tomasso, M., Ambrose, W. A., et al., 2007. Integration of GPR with Stratigraphic and Lidar Data to Investigate Behind-The-Outcrop 3D Geometry of a Tidal Channel Reservoir Analog, Upper Ferron Sandstone, Utah. The Leading Edge, 26(8): 994-998. doi: 10.1190/1.2769555
    Leopold, L. B., Wolman, M. G., 1960. River Meanders. Bulletin of the Geological Society of America, 71: 769-794 doi: 10.1130/0016-7606(1960)71[769:RM]2.0.CO;2
    Ma, S. Z., Sun, Y., Fan, G. J., et al., 2008a. The Method for Studying Thin Interbed Architecture of Burial Meandering Channel Sandbody. Acta Sedimentologica Sinica, 26(4): 632-639 (in Chinese with English Abstract)
    Ma, S. Z., Lü, G. Y., Yan, B. Q., et al., 2008b. Research on Three-Dimensional Heterogeneous Model of Channel Sandbody Controlled by Architecture. Earth Science Frontiers, 15(1): 57-64 (in Chinese with English Abstract)
    Marin, D. A., Ross, K. M., Bascle, B. J., 1998. Overview of the Depositional Styles by Chronozone of the Northern Gulf of Mexico. AAPG Hedberg Research Conference, September 20-24, 1998, Hedberg
    Maynard, J. R., Feldman, H. R., Alway, R., 2010. From Bars to Valleys: The Sedimentology and Seismic Geomorphology of Fluvial to Estuarine Incised-Valley Fills of the Grand Rapids Formation (Lower Cretaceous), Iron River Field, Alberta, Canada. Journal of Sedimentary Research, 80(7): 611-638. doi: 10.2110/jsr.2010.060
    Miall, A. D., 1985. Architectural-Element Analysis: A New Method of Facies Analysis Applied to Fluvial Deposits. Earth-Science Reviews, 22(4): 261-308. doi: 10.1016/0012-8252(85)90001-7
    Miall, A. D., 1988. Reservoir Heterogeneities in Fluvial Sandstones: Lessons from Outcrop Studies. AAPG Bulletin, 72: 682-697. doi: 10.1306/703c8f01-1707-11d7-8645000102c1865d
    Miall, A. D., 2002. Architecture and Sequence Stratigraphy of Pleistocene Fluvial Systems in the Malay Basin, Based on Seismic Time-Slice Analysis. AAPG Bulletin, 86: 1201-1216. doi: 10.1306/61eedc56-173e-11d7-8645000102c1865d
    Miall, A. D., 2006. Reconstructing the Architecture and Sequence Stratigraphy of the Preserved Fluvial Record as a Tool for Reservoir Development: A Reality Check. AAPG Bulletin, 90: 989-1002 doi: 10.1306/02220605065
    Neal, A., 2004. Ground-Penetrating Radar and Its Use in Sedimentology: Principles, Problems and Progress. Earth-Science Reviews, 66(3/4): 261-330. doi: 10.1016/j.earscirev.2004.01.004
    Peyton, L., Bottjer, R., Partyka, G., 1998. Interpretation of Incised Valleys Using New 3-D Seismic Techniques: A Case History Using Spectral Decomposition and Coherency. The Leading Edge, 17(9): 1294-1298. doi: 10.1190/1.1438127
    Posamentier, H. W., 2001. Lowstand Alluvial Bypass Systems: Incised vs. Unincised. AAPG Bulletin, 85: 1771-1793
    Posamentier, H. W., Dorn, G. A., Cole, M. J., et al., 1996. Imaging Elements of Depositional Systems with 3-D Seismic Data: A Case Study. SEPM, Gulf Coast Section, 17th Annual Research Conference. 213-228
    Posamentier, H. W., Kolla, V., 2003. Seismic Geomorphology and Stratigraphy of Depositional Elements in Deep-Water Settings. Journal of Sedimentary Research, 73(3): 367-388. doi: 10.1306/111302730367
    Posamentier, H. W., Meizarwin, P. S., Wisman, T., 2000. Deep Water Depositional Systems—Ultra-Deep Makassar Strait, Indonesia. In: Weimer, P., Slatt, R. M., Coleman, J., et al., eds., Deep-Water Reservoirs of the World, SEPM Foundation, Gulf Coast Section, 20th Annual Research Conference. 806-816
    Qian, R. J., 2009. Analysis of Problems in Seismic Slice Interpretation. Beijing 2009 International Geophysical Conference and Exposition, 24-27 April, 2009, Beijing. doi: 10.1190/1.3603670
    Sangree, J. B., Widmier, J. M., 1977. Seismic Stratigraphy and Global Changes of Sea Level, Part 9: Seismic Interpretation of Clastic Depositional Facies. In: Payton, C. E., ed., Seismic Stratigraphy——Applications to Hydrocarbon Exploration. AAPG Memoir, 26: 165-184
    Tronicke, J., Dietrich, P., Wahlig, U., et al., 2002. Integrating Surface Georadar and Crosshole Radar Tomography: A Validation Experiment in Braided Stream Deposits. Geophysics, 67(5): 1516-1523. doi: 10.1190/1.1512747
    Vail, P. R., Mitchum, R. M., 1977. Seismic Stratigraphy and Global Changes of Sea Level, Part 1: Overview. In: Payton, C. E., ed., Seismic Stratigraphy: Applications to Hydrocarbon Exploration. AAPG Memoir, 26: 51-52
    Winker, C. D., 1982, Cenozoic Shelf Margins, Northwestern Gulf of Mexico. Gulf Coast Association of Geologic Societies Transactions, 32: 427-448
    Wood, L. J., 2004. Quantitative Seismic Geomorphology: The Future of Reservoir Characterization. Houston Geological Society, Bulletin, 2004: 13-17
    Wood, L. J., 2007. Quantitative Seismic Geomorphology of Pliocene and Miocene Fluvial Systems in the Northern Gulf of Mexico, U.S.A. . Journal of Sedimentary Research, 77(9): 713-730. doi: 10.2110/jsr.2007.068
    Wu, S. H., Yue, D. L., Liu, J. M., et al., 2008. Hierarchy Modeling of Subsurface Paleo-Channel Reservoir Architecture. Science in China Series D: Earth Sciences, 38(Suppl. I): 111-121 (in Chinese)
    Wu, Y. Y., Gu, J. Y., Shi, H. S., et al., 2008. From Sequence Stratigraphy to Seismic Sedimentology—Summarized from the 5th Congress of Oil and Gas Sequence Stratigraphy. Petroleum Geology & Experiment, 30(3): 217-226 (in Chinese with English Abstract)
    Xue, P. H., 1991. Reservoir Model Conspectus of Fluvial Point Bar. Petroleum Industry Press, Beijing. 51-55 (in Chinese)
    Yang, C. T., 1971. On River Meanders. Journal of Hydrology, 13: 231-253. doi: 10.1016/0022-1694(71)90226-5
    Yue, D. L., 2006. The Study on Architecture Analysis and Remaining Oil Distribution Patterns of Meandering River Reservoir. China University of Petroleum Press, Beijing. 112-140 (in Chinese)
    Yue, D. L., Wu, S. H., Liu, J. M., 2007. An Accurate Method for Anatomizing Architecture of Subsurface Reservoir in Point Bar of Meandering River. Acta Petrolei Sinica, 28(4): 99-103 (in Chinese with English Abstract)
    Zeng, H. L., Backus, M. M., 2005a. Interpretive Advantages of 90°-Phase Wavelets: Part 1—Modeling. Geophysics, 70(3): C7-C15. doi: 10.1190/1.1925740
    Zeng, H. L., Backus, M. M., 2005b. Interpretive Advantages of 90°-Phase Wavelets: Part 2—Seismic Applications. Geophysics, 70(3): C17-C24. doi: 10.1190/1.1925741
    Zeng, H. L., Backus, M. M., Barrow, K. T., et al., 1998a. Stratal Slicing, Part Ⅰ: Realistic 3-D Seismic Model. Geophysics, 63(2): 502-513. doi: 10.1190/1.1444351
    Zeng, H. L., Henry, S. C., Riola, J. P., 1998b. Stratal Slicing, Part Ⅱ: Real 3-D Seismic Data. Geophysics, 63(2): 514-522. doi: 10.1190/1.1444352
    Zeng, H. L., Hentz, T. F., 2004. High-Frequency Sequence Stratigraphy from Seismic Sedimentology: Applied to Miocene, Vermilion Block 50, Tiger Shoal Area, Offshore Louisiana. AAPG Bulletin, 88(2): 153-174 doi: 10.1306/10060303018
    Zeng, H. L., Kerans, C., 2003. Seismic Frequency Control on Carbonate Seismic Stratigraphy: A Case Study of the Kingdom Abo Sequence, West Texas. AAPG Bulletin, 87(2): 273-293. doi: 10.1306/08270201023
    Zhang, J. H., Zhou, Z. X., Tian, M. Y., et al, 2007. Several Theoretical Issues about Interpretation of Seismic Slices. OGP, 42(3): 348-352, 361
    Zhang, X. G., 2010. Study on Seismic Sedimentology and Its Application. China University of Petroleum Press, Qingdao. 108-110 (in Chinese)
    Zhang, X. G., Lin, C. Y., Zhang, T., 2010a. Seismic Sedimentology and its Application in Shallow Sea Area, Gentle Slope Belt of Chengning Uplift. Journal of Earth Science, 21(4): 471-479. doi: 10.1007/s12583-010-0108-y
    Zhang, X. G., Lin, C. Y., Zhang, T., et al., 2010b. Seismic Sedimentology Interpretation with Comprehensive Information in Shallow Sea Area, Gentle Slope Belt of Chengning Uplift, China. AAPG Annual Convention & Exhibition, April 11-14, 2010, New Orleans
    Zhang, X. Y., Luo, P., Gu, J. Y., 2004. Application of Ground Penetrating Radar in Outcrop Geological Study-An Example of the Ordovician Carbonate Outcrops in the Tarim Basin. Petroleum Geology & Expeximent, 26(2): 212-216 (in Chinese with English Abstract)
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(913) PDF downloads(63) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint