Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 6
Nov 2016
Turn off MathJax
Article Contents
Anastasiia Pavlova. Determining the source time function using the modified matrix method. Journal of Earth Science, 2016, 27(6): 1054-1059. doi: 10.1007/s12583-015-0573-4
Citation: Anastasiia Pavlova. Determining the source time function using the modified matrix method. Journal of Earth Science, 2016, 27(6): 1054-1059. doi: 10.1007/s12583-015-0573-4

Determining the source time function using the modified matrix method

doi: 10.1007/s12583-015-0573-4
More Information
  • Corresponding author: Anastasiia Pavlova: susyinet@gmail.com
  • Received Date: 10 Jan 2014
  • Accepted Date: 25 Jun 2014
  • Publish Date: 01 Dec 2016
  • The modified matrix method of construction of wavefield on the free surface of an anisotropic medium is proposed. The earthquake source represented by a randomly oriented force or a seismic moment tensor is placed on an arbitrary boundary of a layered anisotropic medium. The theory of the matrix propagator in a homogeneous anisotropic medium by introducing a "wave propagator" is presented. It is shown that the matrix propagator can be represented by a "wave propagator" in each layer for anisotropic layered medium. The matrix propagator P(z, z0=0) acts on the free surface of the layered medium and generates stress-displacement vector at depth z. The displacement field on the free surface of an anisotropic medium is obtained from the received system of equations considering the radiation condition and that the free surface is stressless. The new method determining source time function in anisotropic medium for three different types of seismic source is validated.

     

  • loading
  • Aki, K., Richards, P. G., 2002. Quantitative Seismology, 2nd Ed. University Science Books, Sausalito
    Behrens, E., 1967. Sound Propagation in Lamellar Composite Materials and Averaged Elastic Constants. The Journal of the Acoustical Society of America, 42(2): 168–191. doi: 10.1121/1.1910587
    Buchen, P. W., Ben-Hador, R., 1996. Free-Mode Surface-Wave Computations. Geophysical Journal International, 124(3): 869–887. doi: 10.1111/j.1365-246x.1996.tb05642.x
    Cerveny, V., 2001. Seismic Ray Theory. Cambridge University Press, Cambridge
    Chapman, C. H., 1974. The Turning Point of Elastodynamic Waves. Geophysical Journal International, 39(3): 613–621. doi: 10.1111/j.1365-246x.1974.tb05477.x
    Fryer, G. J., Frazer, L. N., 1984. Seismic Waves in Stratified Anisotropic Media. Geophysical Journal International, 78(3): 691–710. doi: 10.1111/j.1365-246x.1984.tb05065.x
    Fryer, G. J., Frazer, L. N., 1987. Seismic Waves in Stratified Anisotropic Media—Ⅱ. Elastodynamic Eigensolutions for Some Anisotropic Systems. Geophysical Journal International, 91(1): 73–101. doi: 10.1111/j.1365-246x.1987.tb05214.x
    Haskell, N. A., 1953. The Dispersion of Waves in Multilayered Media. Bull. Seism. Soc. Am., 43(1): 17–34
    Helbig, K., Treitel, S., 2001. Wave Fields in Real Media: Wave Proragation in Anisotropic, Anelastic and Porous Media. Oxford Press, Oxford
    Malytskyy, D., Pavlova, A., Hrytsai, O., et al., 2013. Determining the Focal Mechanism of an Earthquake in the Transcarpathian Region of Ukraine. Visnyk KNU, Geology, 4(63): 38–44
    Stephen, R. A., 1981. Seismic Anisotropy Observed in Upper Oceanic Crust. Geophysical Research Letters, 8(8): 865–868. doi: 10.1029/gl008i008p00865
    Thomson, W. T., 1950. Transmission of Elastic Waves through a Stratified Solid Medium. Journal of Applied Physics, 21(2): 89. doi: 10.1063/1.1699629
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(486) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return