Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 5
Oct 2015
Turn off MathJax
Article Contents
Shangzhe Zhou, Zhiyong Xiao, Zuoxun Zeng. Impact Craters with Circular and Isolated Secondary Craters on the Continuous Secondaries Facies on the Moon. Journal of Earth Science, 2015, 26(5): 740-745. doi: 10.1007/s12583-015-0579-y
Citation: Shangzhe Zhou, Zhiyong Xiao, Zuoxun Zeng. Impact Craters with Circular and Isolated Secondary Craters on the Continuous Secondaries Facies on the Moon. Journal of Earth Science, 2015, 26(5): 740-745. doi: 10.1007/s12583-015-0579-y

Impact Craters with Circular and Isolated Secondary Craters on the Continuous Secondaries Facies on the Moon

doi: 10.1007/s12583-015-0579-y
More Information
  • Corresponding author: Zhiyong Xiao, zyxiao@cug.edu.cn
  • Received Date: 19 Jul 2014
  • Accepted Date: 07 Nov 2014
  • Publish Date: 01 Oct 2015
  • On airless bodies such as the Moon and Mercury, secondary craters on the continuous secondaries facies of fresh craters mostly occur in chains and clusters. They have very irregular shapes. Secondaries on the continuous secondaries facies of some Martian and Mercurian craters are more isolated from each other in distribution and are more circular in shape, probably due to the effect of target properties on the impact excavation process. This paper studies secondaries on the continuous secondaries facies of all fresh lunar complex craters using recently-obtained high resolution images. After a global search, we find that 3 impact craters and basins on the Moon have circular and isolated secondaries on the continuous secondaries facies similar to those on Mercury: the Orientale basin, the Antoniadi crater, and the Compton crater. The morphological differences between such special secondaries and typical lunar secondaries are quantitatively compared and analyzed. Our preliminary analyses suggest that the special secondaries were probably caused by high temperature gradients within the local targets when these craters and basins formed. The high-temperature of the targets could have affected the impact excavation process by causing higher ejection angles, giving rise to more scattered circular secondaries.

     

  • loading
  • Boyce, J. W., Tomlinson, S. M., McCubbin, F. M., et al., 2014. The Lunar Apatite Paradox. Science, 344(6182): 400–402. doi: 10.1126/science.1250398
    Chauhan, M., Bhattacharya, S., Saran, S., et al., 2014. Remote Sensing Observations of the Morphological Features of Compton-Belkovich Volcanic Complex: An Ash-Flow Caldera on the Moon. 45th Lunar and Planetary Science Conference (2014) Abstract. Texas. 1862 http://adsabs.harvard.edu/abs/2014LPI....45.1862C
    Gault, D. E., Guest, J. E., Murray, J. B., et al., 1975. Some Comparisons of Impact Craters on Mercury and the Moon. Journal of Geophysical Research, 80(17): 2444–2460. doi: 10.1029/JB080i017p02444
    Gault, D. E., Quaide, W. L., Oberbeck, V. R., 1974. Impact Cratering Mechanics and Structures. A Primer in Lunar Geology, 1: 177–189 http://adsabs.harvard.edu/abs/1974plug.nasa..177G
    Hartmann, K. W., Wood, A. C., 1971. Moon: Origin and Evolution of Multi-Ring Basins. The Moon, 3(1): 3–78. doi: 10.1007/BF00620390
    Heiken, G., Vaniman, D., French, B. M., 1991. Lunar Source Book: A User's Guide to the Moon. Cambridge University Press
    Jolliff, B. L., Gillis, J. J., Haskin, L. A., et al., 2000. Major Lunar Crustal Terranes: Surface Expressions and Crust-Mantle Origins. Journal of Geophysical Research: Planets (1991–2012), 105(E2): 4197–4216. doi: 10.1029/1999JE001103
    Kargel, J. S., 1989. First and Second-Order Equatorial Symmetry of Martian Rampart Crater Ejecta Morphologies. 4th International Conference on Mars. The University of Arizona, 132–133. Tucson
    Losiak, A., Wilheimes, D. E., Byrne, C. J., et al., 2009. A New Lunar Impact Crater Database. 40th Lunar and Planetary Science Conferrence (2009), Abstract. Texas. 1532
    Melosh, H. J., 1989. Impact Cratering: A Geological Process. Oxford University Press, Oxford
    Melosh, H. J., 2011. Planetary Surface Processes. Cambridge University Press, Cambridge
    Miljkovic, K., Wieczorek, M. A., Collins, G. S., et al., 2013. Asymmetric Distribution of Lunar Impact Basins Caused by Variations in Target Properties. Science, 342(6159): 724–726. doi: 10.1126/science.1243224
    Oberbeck, V. R., Morrison, R. H., 1973. The Lunar Herringbone Pattern. In Apollo 17: Preliminary Science Report, 330: 32–15 http://adsabs.harvard.edu/abs/1973LPSC....4..107O
    Oberbeck, V. R., Morrison, R. H., 1974. Laboratory Simulation of the Herringbone Pattern Associated with Lunar Secondary Crater Chains. The Moon, 9(3–4): 415–455. doi: 10.1007/BF00562581
    Pike, R. J., 1980. Geometric Interpretation of Lunar Craters. U. S. Government Printing Office, Washington
    Robinson, M., Brylow, S., Tschimmel, M., et al., 2010. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview. Space Science Reviews, 150(1–4): 81–124. doi: 10.1007/s11214-010-9634-2
    Schaber, G. G., Boyce, J. M., Trask, N. J., 1977. Moon-Mercury: Large Impact Structures, Isostasy and Average Crustal Viscosity. Physics of the Earth and Planetary Interiors, 15(2): 189–201. doi: 10.1016/0031-9201(77)90031-0
    Schultz, P. H., Singer, J., 1980. A Comparison of Secondary Craters on the Moon, Mercury, and Mars. Lunar and Planetary Science Conference. Texas. 2243–2259
    Schultz, P. H., 1988. Cratering on Mercury: A Relook. Mercury, 274–335 http://adsabs.harvard.edu/abs/1988merc.book..274S
    Solomon, S. C., Head, J. W., 1979. Vertical Movement in Mare Basins: Relation to Mare Emplacement, Basin Tectonics, and Lunar Thermal History. Journal of Geophysical Research: Solid Earth (1978–2012), 84(B4): 1667–1682. doi: 10.1029/JB084iB04p01667
    Spudis, P. D., 1993. The Geology of Multi-Ring Impact Basins, Cambridge University Press, Cambridge
    Stöffler, D., Ryder, G., 2001. Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System. Space Science Reviews, 96(1–4): 9–54. doi: 10.1007/978-94-017-1035-0_2
    Strom, R. G., Malhotra, R., Ito, T., et al., 2005. The Origin of Planetary Impactors in the Inner Solar System. Science, 309(5742): 1847–1850. doi: 10.1126/science.1113544
    Wieczorek, M. A., Neumann, G. A., Nimmo, F., et al., 2013. The Crust of the Moon as Seen by GRAIL. Science, 339(6120): 671–675. doi: 10.1126/science.1231530
    Wilhelms, D. E., McCauley, J. F., Trask, N. J., 1987. The Geologic History of the Moon. U. S. Government Printing Office, Washington
    Xiao, Z., Komastu, G., 2013. Impact Craters with Ejecta Flows and Central Pits on Mercury. Planetary and Space Science, 82: 62–78. doi: 10.1016/j.pss.2013.03.015
    Xiao, Z., Strom, R. G., Chapman, C. R., et al., 2014a. Comparisons of Fresh Complex Impact Craters on Mercury and the Moon: Implications for Controlling Factors in Impact Excavation Processes. Icarus, 228(0): 260–275. doi: 10.1016/j.icarus.2013.10.002
    Xiao, Z., Zeng, Z., Komatsu, G., 2014b. A Global Inventory of Central Pit Craters on the Moon: Distribution, Morphology, and Geometry. Icarus, 227: 195–201. doi: 10.1016/j.icarus.2013.09.019
    Xiao, Z., Strom, R. G., Zeng, Z., 2013. Mistakes in Using Crater Size-Frequency Distributions to Estimate Planetary Surface Ages. Earth Science–Journal of China University of Geosciences, 38(1): 145–158 (in Chinese with English abstract)
    Xiao, Z., Strom, R. G., 2012. Problems Determining Relative and Absolute Ages Using the Small Crater Population. Icarus, 220: 254–267. doi: 10.1016/j.icarus.2012.05.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(703) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return