Arndt, S., Jørgensen, B. B., LaRowe, D. E., et al., 2013. Quantifying the Degradation of Organic Matter in Marine Sediments: A Review and Synthesis. Earth-Science Reviews, 123: 53–86. doi: 10.1016/j.earscirev.2013.02.008 |
Bear, J., 1972. Dynamics of Fluids In Porous Media. Elsevier, New York. 764 http://www.sciencedirect.com/science/article/pii/0013795273900471 |
Berg, P., Rysgaard, S., Thamdrup, B., 2003. Dynamic Modeling of Early Diagenesis and Nutrient Cycling: A Case Study in an Artic Marine Sediment. American Journal of Science, 303(10): 905–955. doi: 10.2475/ajs.303.10.905 |
Berner, R. A., 1964. An Idealized Model of Dissolved Sulfate Distribution in Recent Sediments. Geochimica et Cosmochimica Acta, 28(9): 1497–1503. doi: 10.1016/0016-7037(64)90164-4 |
Berner, R. A., 1980. Early Diagenesis: A Theoretical Approach. Princeton University Press, Princeton. 241 http://www.researchgate.net/publication/340371877_Early_Diagenesis_A_Theoretical_Approach |
Bhatnagar, G., Chapman, W. G., Dickens, G. R., et al., 2007. Generalization of Gas Hydrate Distribution and Saturation in Marine Sediments by Scaling of Thermodynamic and Transport Processes. American Journal of Science, 307(6): 861–900. doi: 10.2475/06.2007.01 |
Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature, 407(6804): 623–626. doi: 10.1038/35036572 |
Borowski, W. S., Paull, C. K., William Ussler Ⅲ, 1999. Global and Local Variations of Interstitial Sulfate Gradients in Deep-Water, Continental Margin Sediments: Sensitivity to Underlying Methane and Gas Hydrates. Marine Geology, 159. doi: 10.1016/S0025-3227(99)00004-3 |
Boudreau, B. P., 1984. On the Equivalence of Nonlocal and Radial-Diffusion Models for Porewater Irrigation. Journal of Marine Research, 42: 731–735. DOI: 10.1357/002224084788505924 |
Boudreau, B. P., 1996. A Method-of-Lines Code for Carbon and Nutrient Diagenesis in Aquatic Sediments. Computers & Geosciences, 22(5): 479–496. doi: 10.1016/0098-3004(95)00115-8 |
Boudreau, B. P., 1997. Diagenetic Models and Their Implementation. Springer, Berlin |
Boudreau, B. P., Ruddick, B. R., 1991. On a Reactive Continuum Representation of Organic Matter Diagenesis. American Journal of Science, 291: 507–538. doi: 10.2475/ajs.291.5.507 |
Boudreau, B. P., Westrich, J. T., 1984. The Dependence of Bacterial Sulfate Reduction on Sulfate Concentration in Marine Sediments. Geochimica et Cosmochimica Acta, 48(12): 2503–2516. doi: 10.1016/0016-7037(84)90301-6 |
Burdige, D. J., 2006. Geochemistry of Marine Sediments. Princeton University Press, Princeton |
Chatterjee, S., Dickens, G. R., Bhatnagar, G., et al., 2011. Pore Water Sulfate, Alkalinity, and Carbon Isotope Profiles in Shallow Sediment above Marine Gas Hydrate Systems: A Numerical Modeling Perspective. Journal of Geophysical Research, 116(B9): 2156–2202 doi: 10.1029/2011JB008290 |
Conrad, R., 2005. Quantification of Methanogenic Pathways Using Stable Carbon Isotopic Signatures: A Review and a Proposal. Organic Geochemistry, 36(5): 739–752. doi: 10.1016/j.orggeochem.2004.09.006 |
Conrad, R., 2009. The Global Methane Cycle: Recent Advances in Understanding the Microbial Processes Involved. Environmental Microbiology Reports, 1(5): 285–292. doi: 10.1111/j.1758-2229.2009.00038.x |
Dale, A. W., Aguilera, D. R., Regnier, P., et al., 2008. Seasonal Dynamics of the depth and Rate of Anaerobic Oxidation of Methane in Aarhus Bay (Denmark) Sediments. Journal of Marine Research, 66(1): 127–155. doi: 10.1357/002224008784815775 |
Dale, A. W., Regnier, P., Van Cappellen, P., 2006. Bioenergetic Controls on Anaerobic Oxidation of Methane (AOM) in Coastal Marine Sediments: A Theoretical Analysis. American Journal of Science, 306(4): 246–294. doi: 10.2475/ajs.306.4.246 |
Davie, M. K., Buffett, B. A., 2001. A Numerical Model for the Formation of Gas Hydrate below the Seafloor. Journal of Geophysical Research, 106(B1): 497–514. doi: 10.1029/2000JB900363 |
Duan, Z., Mao, S., 2006. A Thermodynamic Model for Calculating Methane Solubility, Density and Gas Phase Composition of Methane-Bearing Aqueous Fluids from 273 to 523 K and from 1 to 2 000 bar. Geochimica et Cosmochimica Acta, 70(13): 3369–3386. doi: 10.1016/j.gca.2006.03.018 |
Emerson, S., Hedges, J., 2008. Chemical Oceanography and the Marine Carbon Cycle: Cambridge University Press, Cambridge, 462 |
Emerson, S., Jahnke, R., Heggie, D., 1984. Sediment-Water Exchange in Shallow Water Estuarine Sediments. Journal of Marine Research, 42: 709–730. doi: 10.1357/002224084788505942 |
Expedition 311 Scientists, 2006a. Expedition 311 Summary. In: Riedel, M., Collett, T. S., Malone, M. J., and the Expedition 311 Scientists, eds., Proc. IODP, 311: Washington, DC |
Expedition 311 Scientists, 2006b. Site U1327. In: Riedel, M., Collett, T. S., Malone, M. J., and the Expedition 311 Scientists, eds., Proc. IODP, 311: Washington, DC |
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., et al., 1979. Early Oxidation of Organic Matter in Pelagic Sediments of the Eastern Equatorial Atlantic Suboxic Diagenesis. Geochimica et Cosmochimica Acta, 43: 1075–1090. doi: 10.1016/0016-7037(79)90095-4 |
Higgins, J. A., Fischer, W. W., Schrag, D. P., 2009. Oxygenation of the Ocean and Sediments: Consequences for the Seafloor Carbonate Factory. Earth and Planetary Science Letters, 284(1): 25–33. doi: 10.1016/j.epsl.2009.03.039 |
Inskeep, W. P., Bloom, P. R., 1985. An Evaluation of Rate Equations for Calcite Precipitation Kinetics at pCO2 less than 0.01 atm and pH Greater than 8. Geochimica et Cosmochimica Acta, 49(10): 2165–2180. doi: 10.1016/0016-7037(85)90074-2 |
Jakobsen, R., Cold, L., 2007. Geochemistry at the Sulfate Reduction-Methanogenesis Transition Zone in an Anoxic Aquifer—A Partial Equilibrium Interpretation using 2D Reactive Transport Modeling. Geochimica et Cosmochimica Acta, 71(8): 1949–1966. doi: 10.1016/j.gca.2007.01.013 |
Jørgensen, B. B., Parkes, R. J., 2010. Role of Sulfate Reduction and Methane Production by Organic Carbon Degradation in Eutrophic Fjord Sediments (Limfjorden, Denmark). Limnol. Oceanogr. 55(3): 1338–1352. doi: 10.4319/lo.2010.55.3.1338 |
Kastner, M., Sample, J. C., Whiticar, M. J., et al., 1995. Geochemical Evidence for Fluid Flow and Diagenesis at the Cascadia Convergent Margin. Proceedings of the Ocean Drilling Program, Scientific Results, 146, No. Pt 1. |
Kim, J. H., Torres, M. E., Hong, W. L., et al., 2013. Pore Fluid Chemistry from the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2): Source, Mechanisms and Consequences of Fluid Freshening in the Central Part of the Ulleung Basin, East Sea. Marine and Petroleum Geology, 47: 99–112. doi: 10.1016/j.marpetgeo.2012.12.011 |
Luff, R., Wallmann, K., 2003. Fluid Flow, Methane Fluxes, Carbonate Precipitation and Biogeochemical Turnover in Gas Hydrate-Bearing Sediments at Hydrate Ridge, Cascadia Margin: Numerical Modeling and Mass Balances. Geochimica et Cosmochimica Acta, 67(18): 3403–3421. doi: 10.1016/S0016-7037(03)00127-3 |
Meister, P., Liu, B., Ferdelman, T. G., et al., 2013. Control of Sulphate and Methane Distributions in Marine Sediments by Organic Matter Reactivity. Geochimica et Cosmochimica Acta, 104: 183–193. doi: 10.1016/j.gca.2012.11.011 |
Meysman, F. J., Middelburg, J. J., Herman, P. M., et al., 2003. Reactive Transport in Surface Sediments. Ⅱ. Media: An Object-Oriented Problem-Solving Environment for Early Diagenesis. Computers & Geosciences, 29(3): 301–318. doi: 10.1016/S0098-3004(03)00007-4 |
Middelburg, J. J., 1989. A Simple Rate Model for Organic Matter Decomposition in Marine Sediments. Geochimica et Cosmochimica Acta, 53(7): 1577–1581. doi: 10.1016/0016-7037(89)90239-1 |
Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations: U. S. Geological Survey Techniques and Methods. Book 6, 497 |
Reeburgh, W. S., 1976. Methane Consumption in Cariaco Trench Waters and Sediments. Earth and Planetary Science Letters, 28(3): 337–344. doi: 10.1016/0012-821X(76)90195-3 |
Reeburgh, W. S., 2007. Oceanic Methane Biogeochemistry. Chemical Reviews, 107(2): 486–513 doi: 10.1021/cr050362v |
Regnier, P., Dale, A. W., Arndt, S., et al., 2011. Quantitative Analysis of Anaerobic Oxidation of Methane (AOM) in Marine Sediments: A Modeling Perspective. Earth-Science Reviews, 106(1–2): 105–130. doi: 10.1016/j.earscirev.2011.01.002 |
Regnier, P., Dale, A. W., Pallud, C., et al., 2005. Incorporating Geomicrobial Processes in Reactive Transport Models of Subsurface Environments. In: Nützmann., G., Viotti, P., Aagaard, P., eds., Reactive Transport in Soil and Groundwater. Springer, Berlin Heidelberg. 109–125 |
Reid, J. 2003. The New Features of Fortran, ISO/IEC JTC1/SC22/WG5N1579. http://j3-fortran.org/doc/WG5/N1551-N1600/N1579.pdf |
Richter, F. M., Liang, Y., 1993. The Rate and Consequences of Sr Diagenesis in Deep-Sea Carbonates. Earth and Planetary Science Letters, 117(3): 553–565. doi: 10.1016/0012-821X(93)90102-F |
Ridgwell, A., Hargreaves, J. C., Edwards, N. R., et al., 2007. Marine Geochemical Data Assimilation in an Efficient Earth System Model of Global Biogeochemical Cycling. Biogeosciences, 4(1): 87–104. doi: 10.5194/bg-4-87-2007 |
Rudnicki, M. D., Elderfield, H., Mottl, M. J., 2001. Pore Fluid Advection and Reaction in Sediments of the Eastern Flank, Juan de Fuca Ridge, 48N. Earth and Planetary Science Letters, 187: 173–189. doi: 10.1016/S0012-821X(99)00191-0 |
Ryu, B. J., Collett, T. S., Riedel, M., et al., 2013. Scientific Results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2). Marine and Petroleum Geology, 47: 1–20. doi: 10.1016/j.marpetgeo.2013.07.007 |
Saltelli, A., Ratto, M., Tarantola, S., et al., 2005. Sensitivity Analysis for Chemical Models. Chemical Reviews, 105(7): 2811–2828 doi: 10.1021/cr040659d |
Schultz, H. D., Zabel, M., 2006. Marine Geochemistry (2ed. ). Springer, Berlin. 593 |
Shipboard Scientific Party, 2003. Site 1245. In: Tréhu, A. M., Bohrmann, G., Rack, F. R., et al., Proc. ODP, Init. Repts., 204: College Station, TX (Ocean Drilling Program), 1–131 |
Thullner, M., Regnier, P., Van Cappellen, P., 2007. Modeling Microbially Induced Carbon Degradation in Redox-Stratified Subsurface Environments: Concepts and Open Questions. Geomicrobiology Journal, 24(3–4): 139–155. doi: 10.1080/01490450701459275 |
Torres, M. E., McManus, J., Hammond, D. E., et al., 2002. Fluid and Chemical Fluxes in and out of Sediments Hosting Methane Hydrate Deposits on Hydrate Ridge, OR, Ⅰ: Hydrological Provinces. Earth and Planetary Science Letters, 201. doi: 10.1016/S0012-821X(02)00733-1 |
Treude, T., Boetius, A., Knittel, K., et al., 2003. Anaerobic Oxidation of Methane above Gas Hydrates at Hydrate Ridge, NE Pacific Ocean. Marine Ecology Progress Series, 264: 1–14. doi: 10.3354/meps264001 |
Turchyn, A. V., DePaolo, D. J., 2011. Calcium Isotope Evidence for Suppression of Carbonate Dissolution in Carbonate-Bearing Organic-Rich Sediments. Geochimica et Cosmochimica Acta, 75(22): 7081–7098. doi: 10.1016/j.gca.2011.09.014 |
Van Cappellen, P., Wang, Y. F., 1996. Cycling of Iron and Manganese in Surface Sediments: A General Theory for the Coupled Transport and Reaction of Carbon, Oxygen, Nitrogen, Sulfur, Iron, and Manganese. American Journal of Science, 296(3): 197–243. doi: 10.2475/ajs.296.3.197 |
Versteeg, H. K., Malalasekera, W., 2007. An Introduction to Computational Fluid Dynamics: The Finite Volume Method: Pearson Education Limited. |
Wegener, G., Boetius, A., 2009. An Experimental Study on Short-Term Changes in the Anaerobic Oxidation of Methane in Response to Varying Methane and Sulfate Fluxes. Biogeosciences, 6: 867–876. doi: 10.5194/bg-6-867-2009 |
Wortmann, U. G., Chernyavsky, B. M., 2011. The Significance of Isotope Specific Diffusion Coefficients for Reaction-Transport Models of Sulfate Reduction in Marine Sediments. Geochimica et Cosmochimica Acta, 75(11): 3046–3056. doi: 10.1016/j.gca.2011.03.007 |
Yang, T., Jiang, S., Ge, L., et al., 2013. Geochemistry of Pore Waters from HQ-1PC of the Qiongdongnan Basin, Northern South China Sea, and Its Implications for Gas Hydrate Exploration. Science China Earth Sciences, 56(4): 521–529. DOI: 10.1007/s11430-012-4560-7 |
Zatsepin, O. Y., Buffett, B. A., 1997. Phase Equilibrium of Gas Hydrate: Implications for the Formation of Hydrate in the Deep Sea Floor. Geophysical Research Letters, 24 (13): 1567–1570. DOI: 10.1029/97GL01599 |