Abbassi, R., Khan, F., Hawboldt, K., 2009. Prediction of Minerals Producing Acid Mine Drainage Using a Computer-Assisted Thermodynamic Chemical Equilibrium Model. Mine Water and the Environment, 28(1): 74–78. doi: 10.1007/s10230-008-0062-4 |
Banks, D., Younger, P. L., Arnesen, R. T., et al., 1997. Mine-Water Chemistry: The Good, the Bad and the Ugly. Environmental Geology, 32(3): 157–174. doi: 10.1007/s002540050204 |
Blodau, C., 2006. A Review of Acidity Generation And Consumption in Acidic Coal Mine Lakes and Their Watersheds. Science of the Total Environment, 369: 307–332. doi: 10.1016/j.scitotenv.2006.05.004 |
Campbell, K. M., Alpers, C. N., Nordstrom, D. K., et al., 2013. Characterization and Remediation of Iron (Ⅲ) Oxide-Rich Scale in a Pipeline Carrying Acid Mine Drainage at Iron Mountain Mine, California, U.S.A. http://ca.water.usgs.gov/projects/iron_mountain/Characterization_Remediation_%20Iron_Oxide_Iron_Mountain.pdf |
Dill, H. G., Pöllmann, H., Bosecker, K., et al., 2002. Supergene Mineralization in Mining Residues of the Matchless Cupreous Pyrite Deposit (Namibia)—A Clue to the Origin of Modern and Fossil Duricrusts in Semiarid Climates. Journal of Geochemical Exploration, 75(1–3); 43–70. doi: 10.1016/S0375-6742(01)00199-6 |
Fan, D., Zhang, T., Ye, J., 2004. The XKS Sb Deposit Hosted by the Upper Devonian Black Shale Series, Hunan, China. Ore Geology Reviews, 24: 121–133. doi: 10.1016/j.oregeorev.2003.08.005 |
Figueiredo, M. O., Pereira Da Silva, T., 2011. The Positive Environmental Contribution of Jarosite by Retaining Lead in Acid Mine Drainage Areas. International Journal of Environmental Research and Public Health, 8(5): 1575–1582. doi: 10.3390/ijerph8051575#sthash.ChM2wAo3.dpuf |
Fishman, M. J., Friedman, L. C., 1989. Solids, sum of constituents, calculation. In: Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geol. Surv. Techniques Water Resour. Invest. 5-A1: 459–460. (http://pubs.usgs.gov/twri/twri5-a1/pdf/TWRI_5-A1.pdf). |
Fu, Z., Wu, F., Mo, C., et al., 2011. Bioaccumulation of Antimony, Arsenic, and Mercury in the Vicinities of a Large Antimony Mine, China. Microchemical Journal, 97(1): 12–19. doi: 10.1016/j.microc.2010.06.004 |
Gomo, M., Vermeulen, D., 2014. Hydrogeochemical Characteristics of a Flooded Underground Coal Mine Groundwater System. Journal of African Earth Sciences, 92: 68–75. doi: 10.1016/j.jafrearsci.2014.01.014 |
He, M., 2007. Distribution and Phytoavailability of Antimony at An Antimony Mining and Smelting Area, Hunan, China. Environmental Geochemistry and Health, 29(3): 209–219. doi: 10.1007/s10653-006-9066-9. |
Growth in Global Materials Use, GDP and Population during the 20th Century. Ecological Economics, 68(10): 2696–2705. doi: 10.1016/j.ecolecon.2009.05.007 |
Levei, E., Frentiu, E., Ponta, M., et al., 2013. Characterization and Assessment of Potential Environmental Risk of Tailings Stored in Seven Impoundments in the Aries River Basin, Western Romania. Chemical Central Journal, 7(5). doi: 10.1186/1752-153X-7-5 |
Liu, F., Le, X. C., McKnight-Whitford, A., et al., 2010. Antimony Speciation and Contamination of Waters in the Xikuangshan Antimony Mining and Smelting Area, China. Environmental Geochemistry and Health, 32(5): 401–413. doi: 10.1007/s10653-010-9284-z |
Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U. S. Geol. Surv. Techniques Methods, 6-A43: 497 (http://pubs.usgs.gov/tm/06/a43). |
Peng, J. T., Hu, R. Z., Burnard, P. G., 2003. Samarium–Neodymium Isotope Systematics of Hydrothermal Calcites from the Xikuangshan Antimony Deposit (Hunan, China): The Potential of Calcite as a Geochronometer. Chemical Geology, 200(1–2): 129–136. doi: 10.1016/S0009-2541(03)00187-6 |
Wang, X., He, M., Xi, J., et al., 2011. Antimony Distribution and Mobility in Rivers around the World's Largest Antimony Mine of Xikuangshan, Hunan Province, China. Microchemical Journal, 97(1): 4–11. doi: 10.1016/j.microc.2010.05.011 |
Yang, D. S., Shimizu, M., Shimazaki, H., et al., 2006. Sulfur Isotope Geochemistry of the Supergiant Xikuangshan Sb Deposit, Central Hunan, China: Constraints on Sources of Ore Constituents. Resource Geology, 56(4): 385–396. doi: 10.1111/j.1751-3928.2006.tb00291.x |