Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 4
Jul 2016
Turn off MathJax
Article Contents
Sheng Yang, Shibing Zhu, Zhenju Li, Xuejun Li, Tao Liu, Jue Wang, Jianwei Xie. Affine & Scale-Invariant Heterogeneous Pyramid Features for Automatic Matching of High Resolution Pushbroom Imagery from Chang'e 2 Satellite. Journal of Earth Science, 2016, 27(4): 716-726. doi: 10.1007/s12583-015-0605-0
Citation: Sheng Yang, Shibing Zhu, Zhenju Li, Xuejun Li, Tao Liu, Jue Wang, Jianwei Xie. Affine & Scale-Invariant Heterogeneous Pyramid Features for Automatic Matching of High Resolution Pushbroom Imagery from Chang'e 2 Satellite. Journal of Earth Science, 2016, 27(4): 716-726. doi: 10.1007/s12583-015-0605-0

Affine & Scale-Invariant Heterogeneous Pyramid Features for Automatic Matching of High Resolution Pushbroom Imagery from Chang'e 2 Satellite

doi: 10.1007/s12583-015-0605-0
More Information
  • Corresponding author: Sheng Yang, 1019_yangsheng@sina.com
  • Received Date: 06 Nov 2013
  • Accepted Date: 14 Jun 2014
  • Publish Date: 12 Jul 2016
  • The automatic feature extracting and matching for large amount of linear pushbroom imagery with higher and higher resolution is urgent and challenging in three dimensional reconstructions, remote sensing and mapping. Affine & scale-invariant heterogeneous pyramid feature is proposed in this paper, along with the new scale-invariant analysis method, the detecting of the key points, the affine & scale-invariant descriptor, the steering method of the matching, and the quasi-dense matching algorithm based on the extensive epipolar geometry. The automatic matching is devised for the linear pushbroom imagery. The whole process is executed on lunar images of the highest resolution of ~7 m/pixel (or ~1 m/pixel in the lower orbits) from the Chinese Chang'e 2 satellite, it runs robustly at present, and resulting in large amounts of well-distributed-correspondences with accuracy of 0.3 pixels and excellent reliability, which gives great support for the further exploration both on the Moon and the Earth.

     

  • loading
  • Cai, H. P., Lei, L., Su, Y., 2007. An Affine Invariant Region Detector Using the 4th Differential Invariant. ICTAI 2007. 19th IEEE International Conference on IEEE, 1: 540-543. doi: 10.1109/ICTAI.2007.112
    Dawson, M. D., Todd, N. S., Lofgren, G., 2010. Integration of Apollo Lunar Sample Data into Google Moon. NASA USRP-Internship Final Report, Johnson Space Center. 1-8 http://www.researchgate.net/publication/267555992_Integration_of_Apollo_Lunar_Sample_Data_into_Google_Moon
    Di, K. C., Yue, Z. Y., Liu, Z. Q., et al., 2013. Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data. Journal of Earth Science, 24: 125-135 doi: 10.1007/s12583-013-0316-3
    Gupta, R., Hartley, R. I., 1997. Linear Pushbroom Cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9): 963-975. doi: 10.1109/34.615446
    Gwinner, K., Scholten, F., Spiegel, M., et al., 2009. Derivation and Validation of High-Resolution Digital Terrain Models from Mars Express HRSC-Data. Photogramm. Eng. Remote Sens. , 75(9): 1127-1142 doi: 10.14358/PERS.75.9.1127
    Heipke, C., Oberst, J., Albertz, J., et al., 2007. Evaluating Planetary Digital Terrain Models—The HRSC DTM Test. Planetary and Space Science, 55(14): 2173-2191 doi: 10.1016/j.pss.2007.07.006
    Jaumann, R., Neukum, G., Behnke, T., et al., 2007. The High-Resolution Stereo Camera (HRSC) Experiment on Mars Express: Instrument Aspects and Experiment Conduct from Interplanetary Cruise through the Nominal Mission. Planetary and Space Science, 55(7): 928-952 http://www.sciencedirect.com/science/article/pii/S0032063306003448
    Ji, D. C., Li, X. J., Xie, J. W., 2008. A Hierarchical Aerial Photography Matching Algorithm. Journal of the Academy of Equipment Command & Technology, 4: 73-76 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XYZH200804020.htm
    Juan, L., Gwun, O., 2009. A Comparison of SIFT, PCA-SIFT and SURF. International Journal of Image Processing, 3(4): 143-152 http://www.oalib.com/paper/2162641
    Ke, Y., Sukthankar, R., 2004. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors//Computer Vision and Pattern Recognition, 2004 (CVPR 2004). Proceedings of the 2004 IEEE Computer Society Conference on IEEE, 2: Ⅱ-506-Ⅱ-513 http://ci.nii.ac.jp/naid/20001623746
    Kim, T., 2000. A Study on the Epipolarity of Linear Pushbroom Images. Photogrammetric Engineering and Remote Sensing, 66(8): 961-966 http://www.researchgate.net/publication/283431921_A_Study_on_the_Epipolarity_of_Linear_Pushbroom_Images
    Kirk, R. L., Archinal, B. A., Gaddis, L. R., et al., 2008. Cartography for Lunar Exploration: 2008 Status and Mission Plans. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B4): 1472-1489 http://www.researchgate.net/publication/228730753_Carthography_for_lunar_exploration_2008_status_and_mission_plans
    Lee, H. Y., Park, W., 2002. A New Epipolarity Model Based on the Simplified Push-Broom Sensor Model. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(4): 631-636 http://www.ixueshu.com/document/3114c9e537bcca72318947a18e7f9386.html
    Li, C. L., Liu, J. J., Ren, X., et al., 2010. The Global Image of the Moon by the Chang'e-1: Data Processing and Lunar Cartography. Sci. China Earth Sci. , 3: 294-306 (in Chinese) doi: 10.1007/s11430-010-4016-x
    Li, J., Allinson, N. M., 2008. A Comprehensive Review of Current Local Features for Computer Vision. Neurocomputing, 71(10): 1771-1787 doi: 10.1016/j.neucom.2007.11.032
    Lindeberg, T., 1994. Scale-Space Theory: A Basic Tool for Analyzing Strucures at Different Scale. Journal of Applied Statistics, 21: 225-270 doi: 10.1080/757582976
    Liu, F. J., Yang, R., Zhang, Y., et al., 2011. Distribution of Olivine and Pyroxene Derived from Clementine Data in Crater Copernicus. Journal of Earth Science, 22(5): 586-594 doi: 10.1007/s12583-011-0209-2
    Lowe, D. G., 2004. Distinctive Image Features from Scale-Invariant Keypoints. Computer Vision, 2: 91-110 http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1023/B:VISI.0000029664.99615.94&rfr_id=trans/tp/2008/10/ttp2008101683.htm
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., et al., 2005. A Comparison of Affine Region Detectors. International Journal of Computer Vision, 65(1-2): 43-72 doi: 10.1007/s11263-005-3848-x
    Morgan, M. F., 2004. Epipolar Resampling of Linear Array Scanner Scenes: [Dissertation]. University of Calgary, Calgary
    Shen, R. J., Li, X. J., 2010. Automatic Selenograph Production-New Direction of the Lunar Remote Sensor Data Processing. Journal of the Academy of Equipment Command & Technology: 1-5 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XYZH201001002.htm
    Su, J. Y., 2002. Study of SPOT Epipolar Image Polynomial Fitting Based on Matching Constraint. Remote Sensing Information, 4: 10-15 (in Chinese with English Abstract) http://www.researchgate.net/publication/290845920_Study_of_SPOT_epipolar_image_polynomial_fitting_based_on_matching_constraint
    Tuytelaars, T., Van, G. L., 2004. Matching Widely Separated Views Based on Affine Invariant Regions. International Journal of Computer Vision, 59(1): 61-85 doi: 10.1023/B:VISI.0000020671.28016.e8
    Xie, J. R., Beigi, M. S., 2009. A Scale-Invariant Local Descriptor for Event Recognition in 1D Sensor Signals//Multimedia and Expo, ICME 2009. IEEE International Conference on IEEE, June 28-July 3, 2009, New York. 1226-1229
    Xu, W. Y., Huang, X. S., 2009. Analysis of Image Registration Technique for Recovering Large Rotation, Translation and Scale Parameters. Signal Processing, 25(10): 1598-1604 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XXCN200910021.htm
    Yang, S., Li, X. J., 2011. Accelerating Matching Based on Improved SIFT for Selenograph. In: Proceedings of International Conference on Computer Design and Applications, Xi'an. 530-533
    Yang, S., Li, X. J., Liu, T., et al., 2013a. A Review on Matching and Similarity Measures for High Resolution Remote Sensing Imagery. Geomatics & Spatial Information Technology, 36(5): 16-21 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBCH201305006.htm
    Yang, S., Li, X. J., Wang, J., et al., 2013b. Continuous Scale Multi-Change Detecting Quasi-Dense Matching for Epipolar Resample Images. Computer Technology and Development, 23(4): 111-114 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-WJFZ201304028.htm
    Yang, S., Li, X. J., Xie, J. W., et al. 2012. Quasi-dense Matching of Selenograph Based on Image Waves. Proceedings of the 31st Chinese Control Conference, IEEE, Hefei. 5607-5612 (in Chinese with English Abstract)
    Yokoya, N., 1994. Dense Matching of Two Views with Large Displacement//Image Processing, 1994. Proceedings ICIP-94, IEEE International Conference, Nov. 13-16, 1994, Austin, TX. 213-217
    Zhang, G., Pan, H., Jiang, W., et al., 2010. Epipolar Resampling and Epipolar Geometry Reconstruction of Linear Array Scanner Scenes Based on RPC Model. Remote Sensing for Land & Resources, 4: 1-5 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTYG201004002.htm
    Zoltan, M., 2009. Dense Matching Methods for 3D Scene Reconstruction from Wide Baseline Images: [Dissertation]. Eotvos Lorand University, Budapest. 33-75
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(814) PDF downloads(366) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return