Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 6
Nov 2016
Turn off MathJax
Article Contents
Robert Tenzer, Mohammad Bagherbandi. Theoretical deficiencies of isostatic schemes in modeling the crustal thickness along the convergent continental tectonic plate boundaries. Journal of Earth Science, 2016, 27(6): 1045-1053. doi: 10.1007/s12583-015-0608-x
Citation: Robert Tenzer, Mohammad Bagherbandi. Theoretical deficiencies of isostatic schemes in modeling the crustal thickness along the convergent continental tectonic plate boundaries. Journal of Earth Science, 2016, 27(6): 1045-1053. doi: 10.1007/s12583-015-0608-x

Theoretical deficiencies of isostatic schemes in modeling the crustal thickness along the convergent continental tectonic plate boundaries

doi: 10.1007/s12583-015-0608-x
More Information
  • Corresponding author: Robert Tenzer: rtenzer@sgg.whu.edu.cn
  • Received Date: 15 Jan 2014
  • Accepted Date: 30 May 2014
  • Publish Date: 01 Dec 2016
  • The results of global and regional studies often show significant disagreement between the Moho depths determined using seismic and isostatic models. In this study, we estimate the differences between these two models in central Eurasia. The Vening Meinesz-Moritz (VMM) inverse problem of isostasy is utilized to determine the isostatic Moho depths. The estimated VMM Moho depths are then corrected for the sediment density contrast. The application of this correction improves the agreement between the isostatic and seismic Moho models. The existing discrepancies between the isostatic and seismic models are finally modeled by applying the non-isostatic correction, which accounts for the unmodelled mantle density heterogeneities and other geodynamic processes, which are not taken into account in classical isostatic models. Our results reveal that the non-isostatic correction still cannot fully describe mechanisms affecting the Moho geometry along the convergent continent-tocontinent tectonic plate boundaries occurring beneath Himalayas despite an overall good performance of the applied method.

     

  • loading
  • Airy, G. B., 1855. On the Computations of the Effect of the Attraction of the Mountain Masses as Disturbing the Apparent Astronomical Latitude of Stations in Geodetic Surveys. Trans. Roy. Soc. (London), Ser. B, 145
    Allègre, C. J., Courtillot, V., Tapponier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307: 17–22 doi: 10.1038/307017a0
    Bassin, C., Laske, G., Masters, T. G., 2000. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 81: F897 http://ci.nii.ac.jp/naid/10015303905
    Bagherbandi, M., 2012. A Comparison of Three Gravity Inversion Methods for Crustal Thickness Modelling in Tibet Plateau. J. Asian Earth Sci., 43(1): 89–97. doi: 10.1016/j.jseaes.2011.08.013
    Bagherbandi, M., Sjöberg, L. E., 2012. Non-Isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia. Physics. Earth Planet. Inter., 200/201: 37–44
    Bagherbandi, M., Tenzer, R., Sjöberg, L. E., et al., 2013. Improved Global Crustal Thickness Modeling Based on the VMM Isostatic Model and Non-Isostatic Gravity Correction. J. Geodyn., 66: 25–37 doi: 10.1016/j.jog.2013.01.002
    Braitenberg, C., Zadro, M., Fang, J., et al., 2000a. Gravity Inversion in Quinghai-Tibet Plateau. Phys. Chem. Earth, 25: 381–386 http://www.sciencedirect.com/science/article/pii/S1464189500000600
    Braitenberg, C., Zadro, M., Fang, J., et al., 2000b. The Gravity and Isostatic Moho Undulations in Qinghai-Tibet Plateau. J. Geodyn. , 30: 489–505 doi: 10.1016/S0264-3707(00)00004-1
    Braitenberg, C., Wienecke, S., Wang, Y., 2006. Basement Structures from Satellite-Derived Gravity Field: South China Sea Ridge. J. Geophys. Res. , 111: B05407 doi: 10.1029/2005JB003938/full
    Caporali, A., 1995. Gravity Anomalies and the Flexure of the Lithosphere in the Karakoram, Pakistan. J. Geophys. Res., 100: 15075–15085 doi: 10.1029/95JB00613
    Caporali, A., 1998. Gravimetric Constraints on the Rheology of the Indian and Tarim Plates in the Karakoram Continent Collision Zone. J. Asian Earth Sci., 16: 313–321 doi: 10.1016/S0743-9547(98)00005-1
    Caporali, A., 2000. Buckling of the Lithosphere in Western Himalaya: Constraints from Gravity and Topography Data. J. Geophys. Res., 105: 3103–3113 doi: 10.1029/1999JB900389
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics. Earth Planet. Inter., 25: 297–356 doi: 10.1016/0031-9201(81)90046-7
    Gao, R., Lu, Z., Li, Q., et al., 2005. Geophysical Survey and Geodynamic Study of Crust and Upper Mantle in the Qinghai-Tibet Plateau. Episode, 28(4): 263–273 doi: 10.18814/epiiugs/2005/v28i4/005
    Gladkikh, V., Tenzer, R., 2011. A Mathematical Model of the Global Ocean Saltwater Density Distribution. Pur. Appl. Geophys. , 169(1/2): 249–257 doi: 10.1007/s00024-011-0275-5
    Hayford, J. F., 1909. The Figure of the Earth and Isostasy from Measurements in the United States, USCGS. Washington Dept. f Commerce & Labor, Washington
    Hayford, J. F., Bowie, W., 1912. The Effect of Topography and Isostatic Compensation upon the Intensity of Gravity. USCGS, Spec. Publ., 10: 132 http://core.ac.uk/display/61073836
    Heiskanen, W. A., Vening-Meinesz, F. A., 1958. The Earth and Its Gravity Field. McGraw-Hill Book Company, Inc., New York
    Heiskanen, W. A., Moritz, H., 1967. Physical Geodesy. Freeman W.H., New York
    Hinze, W. J., 2003. Bouguer Reduction Density, Why 2.67? Geophysics, 68(5): 1559–1560 doi: 10.1190/1.1620629
    Hirn, A., Lepine, J. C., Jobert, T. G., et al., 1984. Crust Structure and Variability of the Himalayan Border of Tibet. Nature, 307(5946): 23–25 doi: 10.1038/307023a0
    Kaban, M. K., Schwintzer, P., Tikhotsky, S. A., 1999. Global Isostatic Gravity Model of the Earth. Geophys. J. Int., 136: 519–536 doi: 10.1046/j.1365-246x.1999.00731.x
    Kaban, M. K., Schwintzer, P., Artemieva, I. M., et al., 2003. Density of the Continental Roots: Compositional and Thermal Contributions. Earth Planet. Sci. Lett., 209: 53–69 doi: 10.1016/S0012-821X(03)00072-4
    Kaban, M. K., Schwintzer, P., Reigber, C., 2004. A New Isostatic Model of the Lithosphere and Gravity Field. J. Geodn., 78: 368–385 doi: 10.1007/s00190-004-0401-6
    Kind, R., Ni, J., Zhao, W., et al., 1996. Evidence from Earthquake Data for a Partially Molten Crustal Layer in Southern Tibet. Science, 274: 1692–1694 doi: 10.1126/science.274.5293.1692
    Kind, R., Yuan, X., Saul, J., et al., 2002. Seismic Images of Crust and Upper Mantle beneath Tibet: Evidence for Eurasian Plate Subduction. Science, 298: 1219–1221 doi: 10.1126/science.1078115
    Lyon-Caen, H., Molnar, P., 1983. Constraints on the Structure of the Himalaya from an Analysis of Gravity Anomalies and a Flexural Model of the Lithosphere. J. Geophys. Res., 88: 8171–8191 doi: 10.1029/JB088iB10p08171
    Lyon-Caen, H., Molnar, P., 1984. Gravity Anomalies and the Structure of Western Tibet and the Southern Tarim Basin. Geophys. Res. Lett., 11: 1251–1254 doi: 10.1029/GL011i012p01251
    Mayer-Guerr, T., Rieser, D., Höck, E., et al., 2012. The New Combined Satellite only Model GOCO03s. International Symposium on Gravity, Geoid and Height Systems 2012. Venice, Italy
    Moritz, H., 1980. Advanced Physical Geodesy. Abacus Press, Tunbridge Wells
    Moritz, H., 1990. The Figure of the Earth. Wichmann H., Karlsruhe
    Novák, P., 2010. High Resolution Constituents of the Earth Gravitational Field. Surv. Geoph., 31(1): 1–21 doi: 10.1007/s10712-009-9077-z
    Pavlis, N. K., Factor, J. K., Holmes, S. A., 2007. Terrain-Related Gravimetric Quantities Computed for the Next EGM. In: Forsberg, R., ed., Gravity Field of the Earth. Kiliçoglu, Proceedings of the 1st International Symposium of the International Gravity Field Service (IGFS), Harita Dergisi, General Command of Mapping, Ankara
    Pavlis, N. K., Holmes, S. A., Kenyon, S. C., et al., 2012. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117: B04406
    Pratt, J. H., 1855. On the Attraction of the Himalaya Mountains and of the Elevated Regions beyond upon the Plumb-Line in India. Trans. Roy. Soc. (London), Ser. B, 145
    Rai, S. S., Priestley, K., Gaur, V. K., 2006. Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophys. Res. Lett. , 33: L15308 doi: 10.1029/2006GL026076
    Schulte-Pelkum, V., Monsalve, G., Sheehan, A., et al., 2005. Imaging the Indian Subcontinent beneath the Himalaya. Nature, 435: 1222–1225 doi: 10.1038/nature03678
    Sjöberg, L. E., 2009. Solving Vening Meinesz-Moritz Inverse Problem in Isostasy. Geophys. J. Int., 179(3): 1527–1536 doi: 10.1111/j.1365-246X.2009.04397.x
    Sjöberg, L. E., Bagherbandi, M., 2011. A Method of Estimating the Moho Density Contrast with a Tentative Application by EGM08 and CRUST2.0. Acta Geophys., 59(3): 502–525 doi: 10.2478/s11600-011-0004-6
    Tenzer, R., Abdalla, A., Vajda, P. H., 2010. The Spherical Harmonic Representation of the Gravitational Field Quantities Generated by the Ice Density Contrast. Contributions to Geophysics and Geodesy, 40(3): 207–223 doi: 10.2478/v10126-010-0009-1
    Tenzer, R., Bagherbandi, M., 2012. Reformulation of the Vening-Meinesz Moritz Inverse Problem of Isostasy for Isostatic Gravity Disturbances. Inter. J. Geosciences, 3(5): 918–929 doi: 10.4236/ijg.2012.325094
    Tenzer, R., Bagherbandi, M., Hwang, C., et al., 2013. Moho Interface Modeling beneath Himalayas, Tibet and Central Siberia Using GOCO02S and DTM2006.0. Terrestrial, Atmospheric and Oceanic Sciences, 24(4): 581–590
    Tenzer, R., Novák, P., Gladkikh, V., 2011. On the Accuracy of the Bathymetry-Generated Gravitational Field Quantities for a Depth-Dependent Seawater Density Distribution. Studia Geophys. Geodaet., 55(4): 609–626 doi: 10.1007/s11200-010-0074-y
    Tenzer, R., Novák, P., Vajda, P., et al., 2012a. Spectral Harmonic Analysis and Synthesis of Earth's Crust Gravity Field. Comput. Geosc. , 16(1): 193–207 doi: 10.1007/s10596-011-9264-0
    Tenzer, R., Gladkikh, V., Vajda, P., et al., 2012b. Spatial and Spectral Analysis of Refined Gravity Data for Modelling the Crust-Mantle Interface and Mantle-Lithosphere Structure. Surv. Geophys. , 33(5): 817–839 doi: 10.1007/s10712-012-9173-3
    Tenzer, R., Novák, P., Gladkikh, V., 2012c. The Bathymetric Stripping Corrections to Gravity Field Quantities for a Depth-Dependant Model of the Seawater Density. Marine Geodesy, 35: 198–220 doi: 10.1080/01490419.2012.670592
    Tenzer, R., Vajda, P. H., 2009. Global Maps of the CRUST2.0 Crustal Components Stripped Gravity Disturbances. J. Geophys. Res. , 114: B05408 doi: 10.1029/2008JB006016/abstract
    Vening-Meinesz, F. A., 1931. A New Method for Regional Isostatic Reduction of Gravity. Bull. Geod., 29: 33–51 doi: 10.1007/BF03030038
    Watts, A. B., 2001. Isostasy and Flexure of the Lithosphere. Cambridge University Press, Cambridge. 458
    Wienecke, S., Braitenberg, C., Götze, H. -J., 2007. A New Analytical Solution Estimating the Flexural Rigidity in the Central Andes. Geophys. J. Int., 169(3): 789–794 doi: 10.1111/j.1365-246X.2007.03396.x
    Wittlinger, G., Vergne, J., Tapponnier, P., et al., 2004. Teleseismic Imaging of Subducting Lithosphere and Moho Offsets beneath Western Tibet. Earth Planet. Sci. Lett., 221: 117–130 doi: 10.1016/S0012-821X(03)00723-4
    Wu, G., Xiao, X., Li, T., 1991. Yadong to Golmud Transect, Qinghai-Tibet Plateau, China. Am. Geophys. Union, Washington. 1–32
    Zeng, R. S., Ding, Z. F., Wu, Q. J., 1994. A Review of the Lithospheric Structure in Tibetan Plateau and Constraints for Dynamics. Acta Geophys. Sinica, 37: 99–116 doi: 10.1007/BF00879582
    Zeng, R. S., Teng, J. W., Li, Y. K., et al., 2002. Crustal Velocity Structure and Eastward Escaping of Crustal Material in the Southern Tibet. Science in China Series D: Earth Sciences, 32(10): 793–798 http://www.researchgate.net/publication/313603130_Crustal_velocity_structure_and_eastward_escaping_of_crustal_material_in_the_southern_Tibet
    Zhang, Z. J., Li, Y. K., Wang, G. J., et al., 2001. E-W Crustal Structure under the Northern Tibet Revealed by Wide-Angle Seismic Profiles. Science in China Series D: Earth Sciences, 31(11): 881–888
    Zhao, W. -J., Nelson, K. D., Project INDEPTH Tea., 1993. Deep Seismic Reflection Evidence for Continental Underthrusting beneath Southern Tibet. Nature, 366: 557–559 doi: 10.1038/366557a0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(582) PDF downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return