Airy, G. B., 1855. On the Computations of the Effect of the Attraction of the Mountain Masses as Disturbing the Apparent Astronomical Latitude of Stations in Geodetic Surveys. Trans. Roy. Soc. (London), Ser. B, 145 |
Allègre, C. J., Courtillot, V., Tapponier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307: 17–22 doi: 10.1038/307017a0 |
Bassin, C., Laske, G., Masters, T. G., 2000. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 81: F897 http://ci.nii.ac.jp/naid/10015303905 |
Bagherbandi, M., 2012. A Comparison of Three Gravity Inversion Methods for Crustal Thickness Modelling in Tibet Plateau. J. Asian Earth Sci., 43(1): 89–97. doi: 10.1016/j.jseaes.2011.08.013 |
Bagherbandi, M., Sjöberg, L. E., 2012. Non-Isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia. Physics. Earth Planet. Inter., 200/201: 37–44 |
Bagherbandi, M., Tenzer, R., Sjöberg, L. E., et al., 2013. Improved Global Crustal Thickness Modeling Based on the VMM Isostatic Model and Non-Isostatic Gravity Correction. J. Geodyn., 66: 25–37 doi: 10.1016/j.jog.2013.01.002 |
Braitenberg, C., Zadro, M., Fang, J., et al., 2000a. Gravity Inversion in Quinghai-Tibet Plateau. Phys. Chem. Earth, 25: 381–386 http://www.sciencedirect.com/science/article/pii/S1464189500000600 |
Braitenberg, C., Zadro, M., Fang, J., et al., 2000b. The Gravity and Isostatic Moho Undulations in Qinghai-Tibet Plateau. J. Geodyn. , 30: 489–505 doi: 10.1016/S0264-3707(00)00004-1 |
Braitenberg, C., Wienecke, S., Wang, Y., 2006. Basement Structures from Satellite-Derived Gravity Field: South China Sea Ridge. J. Geophys. Res. , 111: B05407 doi: 10.1029/2005JB003938/full |
Caporali, A., 1995. Gravity Anomalies and the Flexure of the Lithosphere in the Karakoram, Pakistan. J. Geophys. Res., 100: 15075–15085 doi: 10.1029/95JB00613 |
Caporali, A., 1998. Gravimetric Constraints on the Rheology of the Indian and Tarim Plates in the Karakoram Continent Collision Zone. J. Asian Earth Sci., 16: 313–321 doi: 10.1016/S0743-9547(98)00005-1 |
Caporali, A., 2000. Buckling of the Lithosphere in Western Himalaya: Constraints from Gravity and Topography Data. J. Geophys. Res., 105: 3103–3113 doi: 10.1029/1999JB900389 |
Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics. Earth Planet. Inter., 25: 297–356 doi: 10.1016/0031-9201(81)90046-7 |
Gao, R., Lu, Z., Li, Q., et al., 2005. Geophysical Survey and Geodynamic Study of Crust and Upper Mantle in the Qinghai-Tibet Plateau. Episode, 28(4): 263–273 doi: 10.18814/epiiugs/2005/v28i4/005 |
Gladkikh, V., Tenzer, R., 2011. A Mathematical Model of the Global Ocean Saltwater Density Distribution. Pur. Appl. Geophys. , 169(1/2): 249–257 doi: 10.1007/s00024-011-0275-5 |
Hayford, J. F., 1909. The Figure of the Earth and Isostasy from Measurements in the United States, USCGS. Washington Dept. f Commerce & Labor, Washington |
Hayford, J. F., Bowie, W., 1912. The Effect of Topography and Isostatic Compensation upon the Intensity of Gravity. USCGS, Spec. Publ., 10: 132 http://core.ac.uk/display/61073836 |
Heiskanen, W. A., Vening-Meinesz, F. A., 1958. The Earth and Its Gravity Field. McGraw-Hill Book Company, Inc., New York |
Heiskanen, W. A., Moritz, H., 1967. Physical Geodesy. Freeman W.H., New York |
Hinze, W. J., 2003. Bouguer Reduction Density, Why 2.67? Geophysics, 68(5): 1559–1560 doi: 10.1190/1.1620629 |
Hirn, A., Lepine, J. C., Jobert, T. G., et al., 1984. Crust Structure and Variability of the Himalayan Border of Tibet. Nature, 307(5946): 23–25 doi: 10.1038/307023a0 |
Kaban, M. K., Schwintzer, P., Tikhotsky, S. A., 1999. Global Isostatic Gravity Model of the Earth. Geophys. J. Int., 136: 519–536 doi: 10.1046/j.1365-246x.1999.00731.x |
Kaban, M. K., Schwintzer, P., Artemieva, I. M., et al., 2003. Density of the Continental Roots: Compositional and Thermal Contributions. Earth Planet. Sci. Lett., 209: 53–69 doi: 10.1016/S0012-821X(03)00072-4 |
Kaban, M. K., Schwintzer, P., Reigber, C., 2004. A New Isostatic Model of the Lithosphere and Gravity Field. J. Geodn., 78: 368–385 doi: 10.1007/s00190-004-0401-6 |
Kind, R., Ni, J., Zhao, W., et al., 1996. Evidence from Earthquake Data for a Partially Molten Crustal Layer in Southern Tibet. Science, 274: 1692–1694 doi: 10.1126/science.274.5293.1692 |
Kind, R., Yuan, X., Saul, J., et al., 2002. Seismic Images of Crust and Upper Mantle beneath Tibet: Evidence for Eurasian Plate Subduction. Science, 298: 1219–1221 doi: 10.1126/science.1078115 |
Lyon-Caen, H., Molnar, P., 1983. Constraints on the Structure of the Himalaya from an Analysis of Gravity Anomalies and a Flexural Model of the Lithosphere. J. Geophys. Res., 88: 8171–8191 doi: 10.1029/JB088iB10p08171 |
Lyon-Caen, H., Molnar, P., 1984. Gravity Anomalies and the Structure of Western Tibet and the Southern Tarim Basin. Geophys. Res. Lett., 11: 1251–1254 doi: 10.1029/GL011i012p01251 |
Mayer-Guerr, T., Rieser, D., Höck, E., et al., 2012. The New Combined Satellite only Model GOCO03s. International Symposium on Gravity, Geoid and Height Systems 2012. Venice, Italy |
Moritz, H., 1980. Advanced Physical Geodesy. Abacus Press, Tunbridge Wells |
Moritz, H., 1990. The Figure of the Earth. Wichmann H., Karlsruhe |
Novák, P., 2010. High Resolution Constituents of the Earth Gravitational Field. Surv. Geoph., 31(1): 1–21 doi: 10.1007/s10712-009-9077-z |
Pavlis, N. K., Factor, J. K., Holmes, S. A., 2007. Terrain-Related Gravimetric Quantities Computed for the Next EGM. In: Forsberg, R., ed., Gravity Field of the Earth. Kiliçoglu, Proceedings of the 1st International Symposium of the International Gravity Field Service (IGFS), Harita Dergisi, General Command of Mapping, Ankara |
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., et al., 2012. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117: B04406 |
Pratt, J. H., 1855. On the Attraction of the Himalaya Mountains and of the Elevated Regions beyond upon the Plumb-Line in India. Trans. Roy. Soc. (London), Ser. B, 145 |
Rai, S. S., Priestley, K., Gaur, V. K., 2006. Configuration of the Indian Moho beneath the NW Himalaya and Ladakh. Geophys. Res. Lett. , 33: L15308 doi: 10.1029/2006GL026076 |
Schulte-Pelkum, V., Monsalve, G., Sheehan, A., et al., 2005. Imaging the Indian Subcontinent beneath the Himalaya. Nature, 435: 1222–1225 doi: 10.1038/nature03678 |
Sjöberg, L. E., 2009. Solving Vening Meinesz-Moritz Inverse Problem in Isostasy. Geophys. J. Int., 179(3): 1527–1536 doi: 10.1111/j.1365-246X.2009.04397.x |
Sjöberg, L. E., Bagherbandi, M., 2011. A Method of Estimating the Moho Density Contrast with a Tentative Application by EGM08 and CRUST2.0. Acta Geophys., 59(3): 502–525 doi: 10.2478/s11600-011-0004-6 |
Tenzer, R., Abdalla, A., Vajda, P. H., 2010. The Spherical Harmonic Representation of the Gravitational Field Quantities Generated by the Ice Density Contrast. Contributions to Geophysics and Geodesy, 40(3): 207–223 doi: 10.2478/v10126-010-0009-1 |
Tenzer, R., Bagherbandi, M., 2012. Reformulation of the Vening-Meinesz Moritz Inverse Problem of Isostasy for Isostatic Gravity Disturbances. Inter. J. Geosciences, 3(5): 918–929 doi: 10.4236/ijg.2012.325094 |
Tenzer, R., Bagherbandi, M., Hwang, C., et al., 2013. Moho Interface Modeling beneath Himalayas, Tibet and Central Siberia Using GOCO02S and DTM2006.0. Terrestrial, Atmospheric and Oceanic Sciences, 24(4): 581–590 |
Tenzer, R., Novák, P., Gladkikh, V., 2011. On the Accuracy of the Bathymetry-Generated Gravitational Field Quantities for a Depth-Dependent Seawater Density Distribution. Studia Geophys. Geodaet., 55(4): 609–626 doi: 10.1007/s11200-010-0074-y |
Tenzer, R., Novák, P., Vajda, P., et al., 2012a. Spectral Harmonic Analysis and Synthesis of Earth's Crust Gravity Field. Comput. Geosc. , 16(1): 193–207 doi: 10.1007/s10596-011-9264-0 |
Tenzer, R., Gladkikh, V., Vajda, P., et al., 2012b. Spatial and Spectral Analysis of Refined Gravity Data for Modelling the Crust-Mantle Interface and Mantle-Lithosphere Structure. Surv. Geophys. , 33(5): 817–839 doi: 10.1007/s10712-012-9173-3 |
Tenzer, R., Novák, P., Gladkikh, V., 2012c. The Bathymetric Stripping Corrections to Gravity Field Quantities for a Depth-Dependant Model of the Seawater Density. Marine Geodesy, 35: 198–220 doi: 10.1080/01490419.2012.670592 |
Tenzer, R., Vajda, P. H., 2009. Global Maps of the CRUST2.0 Crustal Components Stripped Gravity Disturbances. J. Geophys. Res. , 114: B05408 doi: 10.1029/2008JB006016/abstract |
Vening-Meinesz, F. A., 1931. A New Method for Regional Isostatic Reduction of Gravity. Bull. Geod., 29: 33–51 doi: 10.1007/BF03030038 |
Watts, A. B., 2001. Isostasy and Flexure of the Lithosphere. Cambridge University Press, Cambridge. 458 |
Wienecke, S., Braitenberg, C., Götze, H. -J., 2007. A New Analytical Solution Estimating the Flexural Rigidity in the Central Andes. Geophys. J. Int., 169(3): 789–794 doi: 10.1111/j.1365-246X.2007.03396.x |
Wittlinger, G., Vergne, J., Tapponnier, P., et al., 2004. Teleseismic Imaging of Subducting Lithosphere and Moho Offsets beneath Western Tibet. Earth Planet. Sci. Lett., 221: 117–130 doi: 10.1016/S0012-821X(03)00723-4 |
Wu, G., Xiao, X., Li, T., 1991. Yadong to Golmud Transect, Qinghai-Tibet Plateau, China. Am. Geophys. Union, Washington. 1–32 |
Zeng, R. S., Ding, Z. F., Wu, Q. J., 1994. A Review of the Lithospheric Structure in Tibetan Plateau and Constraints for Dynamics. Acta Geophys. Sinica, 37: 99–116 doi: 10.1007/BF00879582 |
Zeng, R. S., Teng, J. W., Li, Y. K., et al., 2002. Crustal Velocity Structure and Eastward Escaping of Crustal Material in the Southern Tibet. Science in China Series D: Earth Sciences, 32(10): 793–798 http://www.researchgate.net/publication/313603130_Crustal_velocity_structure_and_eastward_escaping_of_crustal_material_in_the_southern_Tibet |
Zhang, Z. J., Li, Y. K., Wang, G. J., et al., 2001. E-W Crustal Structure under the Northern Tibet Revealed by Wide-Angle Seismic Profiles. Science in China Series D: Earth Sciences, 31(11): 881–888 |
Zhao, W. -J., Nelson, K. D., Project INDEPTH Tea., 1993. Deep Seismic Reflection Evidence for Continental Underthrusting beneath Southern Tibet. Nature, 366: 557–559 doi: 10.1038/366557a0 |