Berg, P., Risgaard-Petersen, N., Rysgaard, S., 1998. Interpretation of Measured Concentration Profiles in Sediment Pore Water. Limnology and Oceanography, 43(7): 1500–1510. doi: 10.4319/lo.1998.43.7.1500 |
Berner, R. A., 1981. A New Geochemical Classification of Sedimentary Environments. SEPM Journal of Sedimentary Research, 51: 359–365. doi: 10.1306/212f7c7f-2b24-11d7-8648000102c1865d |
Brandl, H., Hanselmann, K. W., 1991. Evaluation and Application of Dialysis Porewater Samplers for Microbiological Studies at Sediment-Water Interfaces. Aquatic Sciences, 53(1): 55–73. doi: 10.1007/bf00877075 |
Canfield, D. E., 1994. Factors Influencing Organic Carbon Preservation in Marine Sediments. Chemical Geology, 114(3–4): 315–329. doi: 10.1016/0009-2541(94)90061-2 |
Chen, J. A., Zhang, W., Zhang, R. Y., et al., 2010. Time and Spatial Distribution Characteristics of Nitrogen and Phosphorus in the Sediment of Lake Hongfeng. Proceedings of the 13th World Lake Conference, Wuhan. 2226–2230 |
Conley, D. J., Paerl, H. W., Howarth, R. W., et al., 2009. ECOLOGY: Controlling Eutrophication: Nitrogen and Phosphorus. Science, 323(5917): 1014–1015. doi: 10.1126/science.1167755 |
de Beer, D. D., Sauter, E., Niemann, H., et al., 2006. In Situ Fluxes and Zonation of Microbial Activity in Surface Sediments of the Håkon Mosby Mud Volcano. Limnology and Oceanography, 51(3): 1315–1331. doi: 10.4319/lo.2006.51.3.1315 |
Ding, S. M., Sun, Q., Xu, D., 2010a. Development of the DET Technique for High-Resolution Determination of Soluble Reactive Phosphate Profiles in Sediment Pore Waters. International Journal of Environmental Analytical Chemistry, 90(14–15): 1130–1138. doi: 10.1080/03067310903434733 |
Ding, S. M., Xu, D., Sun, Q., et al., 2010b. Measurement of Dissolved Reactive Phosphorus Using the Diffusive Gradients in Thin Films Technique with a High-Capacity Binding Phase. Environmental Science & Technology, 44(21): 8169–8174. doi: 10.1021/es1020873 |
Elberling, B., Damgaard, L. R., 2001. Microscale Measurements of Oxygen Diffusion and Consumption in Subaqueous Sulfide Tailings. Geochimica et Cosmochimica Acta, 65(12): 1897–1905. doi: 10.1016/s0016-7037(01)00574-9 |
Fenchel, T., 1996. Worm Burrows and Oxic Microniches in Marine Sediments. 2. Distribution Patterns of Ciliated Protozoa. Marine Biology, 127(2): 297–301. doi: 10.1007/bf00942115 |
Feng, Y. Q., Xia, P., Zhang, M. S., et al., 2011. Analysis on Eutrophication Features of Hongfeng Reservoir on Guizhou Plateau. Journal of Guizhou Normal University (Nat. Sci. ), 29(3): 30–35 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-NATR201103008.htm |
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., et al., 1979. Early Oxidation of Organic Matter in Pelagic Sediments of the Eastern Equatorial Atlantic: Suboxic Diagenesis. Geochimica et Cosmochimica Acta, 43(7): 1075–1090. doi: 10.1016/0016-7037(79)90095-4 |
Glud, R. N., 2008. Oxygen Dynamics of Marine Sediments. Marine Biology Research, 4(4): 243–289. doi: 10.1080/17451000801888726 |
Glud, R. N., Gundersen, J. K., Jørgensen, B. B., et al., 1994. Diffusive and Total Oxygen Uptake of Deep-Sea Sediments in the Eastern South Atlantic Ocean: In Situ and Laboratory Measurements. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 41(11–12): 1767–1788. doi: 10.1016/0967-0637(94)90072-8 |
Glud, R. N., Wenzhöfer, F., Tengberg, A., et al., 2005. Distribution of Oxygen in Surface Sediments from Central Sagami Bay, Japan: In-Situ Measurements by Microelectrodes and Planar Optodes. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 52(10): 1974–1987. doi: 10.1016/j.dsr.2005.05.004 |
Gundersen, J. K., Jørgensen, B. B., 1990. Microstructure of Diffusive Boundary Layers and the Oxygen Uptake of the Sea Floor. Nature, 345(6276): 604–607. doi: 10.1038/345604a0 |
Holmkvist, L., Ferdelman, T. G., Jørgensen, B. B., 2011. A Cryptic Sulfur Cycle Driven by Iron in the Methane Zone of Marine Sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica Acta, 75(12): 3581–3599. doi: 10.1016/j.gca.2011.03.033 |
Hulthe, G., Hulth, S., Hall, P. O. J., 1998. Effect of Oxygen on Degradation Rate of Refractory and Labile Organic Matter in Continental Margin Sediments. Geochimica et Cosmochimica Acta, 62(8): 1319–1328. doi: 10.1016/s0016-7037(98)00044-1 |
Jeroschewski, P., Steuckart, C., Kühl, M., 1996. An Amperometric Microsensor for the Determination of H2S in Aquatic Environments. Analytical Chemistry, 68(24): 4351–4357. doi: 10.1021/ac960091b |
Jiang, C. H., Hu, J. W., Huang, X. F., et al., 2011. Phosphorus Speciation in Sediments of Lake Hongfeng, China. Chinese Journal of Oceanology and Limnology, 29(1): 53–62. doi: 10.1007/s00343-011-9047-4 |
Jørgensen, B. B., Revsbech, N. P., 1983. Colorless Sulfur Bacteria Beggiatoa spp. and Thiovulum spp. in O2 and H2S Microgradients. Applied and environmental Microbiology, 45: 1261–1270 doi: 10.1128/aem.45.4.1261-1270.1983 |
Kamp, A., Stief, P., Schulz-Vogt, H. N., 2006. Anaerobic Sulfide Oxidation with Nitrate by a Freshwater Beggiatoa Enrichment Culture. Applied and Environmental Microbiology, 72(7): 4755–4760. doi: 10.1128/aem.00163-06 |
Kristensen, E., Holmer, M., 2001. Decomposition of Plant Materials in Marine Sediment Exposed to Different Electron Acceptors (O2, NO3-, and SO42-), with Emphasis on Substrate Origin, Degradation Kinetics, and the Role of Bioturbation. Geochimica et Cosmochimica Acta, 65(3): 419–433. doi: 10.1016/s0016-7037(00)00532-9 |
Krom, M. D., Davison, P., Zhang, H., et al., 1994. High-Resolution Pore-Water Sampling with a Gel Sampler. Limnology and Oceanography, 39(8): 1967–1972. doi: 10.4319/lo.1994.39.8.1967 |
Kuhl, M., Revsbech, N. P., 2001. Biogeochemical Microsensors for Boundary Layer Studies. In: Boudreau, B. P., Jørgensen, B. B., eds., The Benthic Boundary Layer. Oxford Univ. Press, Oxford. 180–210 |
Kuivila, K. M., Murray, J. W., Devol, A. H., et al., 1989. Methane Production, Sulfate Reduction and Competition for Substrates in the Sediments of Lake Washington. Geochimica et Cosmochimica Acta, 53(2): 409–416. doi: 10.1016/0016-7037(89)90392-x |
Møller, M. M., Nielsen, L. P., Jørgensen, B. B., 1985. Oxygen Responses and Mat Formation by Beggiatoa sp. . Applied and Environmental Microbiology, 50: 373–382 doi: 10.1128/aem.50.2.373-382.1985 |
Nelson, D. C., Jørgensen, B. B., Revsbech, N. P., 1986. Growth Pattern and Yield of a Chemoautotrophic Beggiatoa sp. in Oxygen-Sulfide Microgradients. Applied and Environmental Microbiology, 52(2): 225–233 doi: 10.1128/aem.52.2.225-233.1986 |
Paerl, H. W., Pinckney, J. L., 1996. A Mini-Review of Microbial Consortia: Their Roles in Aquatic Production and Biogeochemical Cycling. Microbial Ecology, 31(3): 225–247. doi: 10.1007/bf00171569 |
Pedersen, O., Pulido, C., Rich, S. M., et al., 2011. In Situ O2 Dynamics in Submerged Isoetes Australis: Varied Leaf Gas Permeability Influences Underwater Photosynthesis and Internal O2. Journal of Experimental Botany, 62(13): 4691–4700. doi: 10.1093/jxb/err193 |
Rasmussen, H., Jørgensen, B., 1992. Microelectrode Studies of Seasonal Oxygen Uptake in a Coastal Sediment: Role of Molecular Diffusion. Marine Ecology Progress Series, 81: 289–303. doi: 10.3354/meps081289 |
Reiners, C. E., Glud, R. N., 2000. In Situ Chemical Sensor Measurement at the Sediment-Water Interface. Chemical Sensors in Oceanography, 1: 249 http://www.researchgate.net/publication/291983783_Sensors_for_in_situ_pH_and_pCO2_measurements_in_seawater_and_at_the_sediment-water_interface |
Revsbech, N. P., 1989. An Oxygen Microsensor with a Guard Cathode. Limnology and Oceanography, 34(2): 474–478. doi: 10.4319/lo.1989.34.2.0474 |
Revsbech, N. P., Jørgensen, B. B., 1986. Microelectrodes: Their Use in Microbial Ecology. Advances in Microbial Ecology, 9: 293–352 doi: 10.1007/978-1-4757-0611-6_7 |
Risgaard-Petersen, N., Revil, A., Meister, P., et al., 2012. Sulfur, Iron-, and Calcium Cycling Associated with Natural Electric Currents Running through Marine Sediment. Geochimica et Cosmochimica Acta, 92: 1–13. doi: 10.1016/j.gca.2012.05.036 |
Sayama, M., Risgaard-Petersen, N., Nielsen, L. P., et al., 2005. Impact of Bacterial NO3-Transport on Sediment Biogeochemistry. Applied and Environmental Microbiology, 71(11): 7575–7577. doi: 10.1128/aem.71.11.7575-7577.2005 |
Schulz, H. N., de Beer, D., 2002. Uptake Rates of Oxygen and Sulfide Measured with Individual Thiomargarita Namibiensis Cells by Using Microelectrodes. Applied and Environmental Microbiology, 68(11): 5746–5749. doi: 10.1128/aem.68.11.5746-5749.2002 |
Stal, L. J., Gemerden, H., Krumbein, W. E., 1985. Structure and Development of a Benthic Marine Microbial Mat. FEMS Microbiology Letters, 31(2): 111–125. doi: 10.1111/j.1574-6968.1985.tb01138.x |
Tankéré, S. P. C., Bourne, D. G., Muller, F. L. L., et al., 2002. Microenvironments and Microbial Community Structure in Sediments. Environmental Microbiology, 4(2): 97–105. doi: 10.1046/j.1462-2920.2002.00274.x |
Thamdrup, B., Finster, K., Fossing, H., et al., 1994. Thiosulfate and Sulfite Distributions in Porewater of Marine Sediments Related to Manganese, Iron, and Sulfur Geochemistry. Geochimica et Cosmochimica Acta, 58(1): 67–73. doi: 10.1016/0016-7037(94)90446-4 |
Thauer, R. K., Jungerman, K., Decker, K., 1977. Energy Conservation in Chemotrophic Anaerobic Bacteria. Bacterial Review, 41: 100–180 http://mmbr.asm.org/content/41/3/809.full-text.pdf |
Wang, F. S., Liu, C. Q., Liang, X. B., et al., 2003. Microbial Sulfate Reduction and Isotopic Characteristics at Sediment-Water Interface of Aha Lake. Quaternary Sciences. 23(5): 582 (in Chinese) http://www.researchgate.net/publication/313707785_Microbial_Sulfate_Reduction_and_Isotopic_Characteristics_at_Sediment-Water_Interface_of_Aha_Lake |
Wang, J. F., Chen, J. A., Yang, Y. Q., et al., 2012. Physical and Chemical Characteristics of Water in Lake Hongfeng during the Disappearance of Seasonal Stratification. Research of Environmental Sciences, 25(8): 845–851 (in Chinese with English Abstract). doi: 10.13198/j.res.2012.08.4.wangjf.009 |
Wu, F. C., Qing, H. R., Wan, G. J., et al., 1997. Geochemistry of HCO3– at the Sediment-Water Interface of Lakes from the Southwestern Chinese Plateau. Water, Air, & Soil Pollution, 99(1–4): 381–389. doi: 10.1007/bf02406878 |
Xu, D., Wu, W., Ding, S. M., et al., 2012. A High-Resolution Dialysis Technique for Rapid Determination of Dissolved Reactive Phosphate and Ferrous Iron in Pore Water of Sediments. Science of the Total Environment, 421/422: 245–252. doi: 10.1016/j.scitotenv.2012.01.062 |
Zhan, Y. H., Guo, H. M., Wang, Y., et al., 2014. Evolution of Groundwater Major Components in the Hebei Plain: Evidences from 30-Year Monitoring Data. Journal of Earth Science, 25(3): 563–574. doi: 10.1007/s12583-014-0445-3 |
Zhang, L., Wang, L., Yin, K. D., et al., 2014. Spatial and Seasonal Variations of Nutrients in Sediment Profiles and Their Sediment-Water Fluxes in the Pearl River Estuary, Southern China. Journal of Earth Science, 25(1): 197–206. doi: 10.1007/s12583-014-0413-y |
Zhang, R. Y., Wu, F. C., Liu, C. Q., et al., 2008. Characteristics of Organic Phosphorus Fractions in Different Trophic Sediments of Lakes from the Middle and Lower Reaches of Yangtze River Region and Southwestern Plateau, China. Environmental Pollution, 152(2): 366–372. doi: 10.1016/j.envpol.2007.06.024 |