Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 6
Nov 2016
Turn off MathJax
Article Contents
Jingfu Wang, Jing'an Chen, Zhihui Dai, Jian Li, Yang Xu, Jing Luo. Microscale chemical features of sediment-water interface in Hongfeng Lake. Journal of Earth Science, 2016, 27(6): 1038-1044. doi: 10.1007/s12583-015-0618-8
Citation: Jingfu Wang, Jing'an Chen, Zhihui Dai, Jian Li, Yang Xu, Jing Luo. Microscale chemical features of sediment-water interface in Hongfeng Lake. Journal of Earth Science, 2016, 27(6): 1038-1044. doi: 10.1007/s12583-015-0618-8

Microscale chemical features of sediment-water interface in Hongfeng Lake

doi: 10.1007/s12583-015-0618-8
More Information
  • Corresponding author: Jing'an Chen: chenjingan@vip.skleg.cn
  • Received Date: 10 Mar 2015
  • Accepted Date: 07 Jul 2016
  • Publish Date: 01 Jun 2016
  • In situ microscale distributions of O2, H2S, pH and redox potential in sediments of Hongfeng Lake, SW China, were investigated using the powerful microsensor technique. Our results show that O2 was depleted within the top 3.9 mm in surface sediments, and H2S was subsequently detected at ~6.0 mm depth, and reached its maximum concentrations at ~25 mm. The degradation of organic matter and reduction of sulfate might be the major pathways of producing H2S in sediments. pH rapidly reduced in surface layers mainly due to H+ release in the oxidation of organic matter. Eh also decreased sharply in surface sediments, probabl indicating the coexistence of Fe and Mn oxides with O2 in aerobic region. Furthermore, the programme of PROFILE was applied to model the O2 gradient, and good fit was obtained between the simulative values and the factual values both in sediments and in the diffusive boundary layer (DBL). The results indicate that the depth-integrated O2 consumption rates within sediments were 0.083 and 0.134 nmol·m−3·s−1 in site S1 and site S2, respectively. In addition, there were distinct DBL in two sediment profiles, with 1.2 mm thickness in S1 and 0.9 mm thickness in S2. The diffusive fluxes of O2 within the DBL were 67.13 nmol·m−2·s−1 in S1 and 88.54 nmol·m−2·s−1 in S2.

     

  • loading
  • Berg, P., Risgaard-Petersen, N., Rysgaard, S., 1998. Interpretation of Measured Concentration Profiles in Sediment Pore Water. Limnology and Oceanography, 43(7): 1500–1510. doi: 10.4319/lo.1998.43.7.1500
    Berner, R. A., 1981. A New Geochemical Classification of Sedimentary Environments. SEPM Journal of Sedimentary Research, 51: 359–365. doi: 10.1306/212f7c7f-2b24-11d7-8648000102c1865d
    Brandl, H., Hanselmann, K. W., 1991. Evaluation and Application of Dialysis Porewater Samplers for Microbiological Studies at Sediment-Water Interfaces. Aquatic Sciences, 53(1): 55–73. doi: 10.1007/bf00877075
    Canfield, D. E., 1994. Factors Influencing Organic Carbon Preservation in Marine Sediments. Chemical Geology, 114(3–4): 315–329. doi: 10.1016/0009-2541(94)90061-2
    Chen, J. A., Zhang, W., Zhang, R. Y., et al., 2010. Time and Spatial Distribution Characteristics of Nitrogen and Phosphorus in the Sediment of Lake Hongfeng. Proceedings of the 13th World Lake Conference, Wuhan. 2226–2230
    Conley, D. J., Paerl, H. W., Howarth, R. W., et al., 2009. ECOLOGY: Controlling Eutrophication: Nitrogen and Phosphorus. Science, 323(5917): 1014–1015. doi: 10.1126/science.1167755
    de Beer, D. D., Sauter, E., Niemann, H., et al., 2006. In Situ Fluxes and Zonation of Microbial Activity in Surface Sediments of the Håkon Mosby Mud Volcano. Limnology and Oceanography, 51(3): 1315–1331. doi: 10.4319/lo.2006.51.3.1315
    Ding, S. M., Sun, Q., Xu, D., 2010a. Development of the DET Technique for High-Resolution Determination of Soluble Reactive Phosphate Profiles in Sediment Pore Waters. International Journal of Environmental Analytical Chemistry, 90(14–15): 1130–1138. doi: 10.1080/03067310903434733
    Ding, S. M., Xu, D., Sun, Q., et al., 2010b. Measurement of Dissolved Reactive Phosphorus Using the Diffusive Gradients in Thin Films Technique with a High-Capacity Binding Phase. Environmental Science & Technology, 44(21): 8169–8174. doi: 10.1021/es1020873
    Elberling, B., Damgaard, L. R., 2001. Microscale Measurements of Oxygen Diffusion and Consumption in Subaqueous Sulfide Tailings. Geochimica et Cosmochimica Acta, 65(12): 1897–1905. doi: 10.1016/s0016-7037(01)00574-9
    Fenchel, T., 1996. Worm Burrows and Oxic Microniches in Marine Sediments. 2. Distribution Patterns of Ciliated Protozoa. Marine Biology, 127(2): 297–301. doi: 10.1007/bf00942115
    Feng, Y. Q., Xia, P., Zhang, M. S., et al., 2011. Analysis on Eutrophication Features of Hongfeng Reservoir on Guizhou Plateau. Journal of Guizhou Normal University (Nat. Sci. ), 29(3): 30–35 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-NATR201103008.htm
    Froelich, P. N., Klinkhammer, G. P., Bender, M. L., et al., 1979. Early Oxidation of Organic Matter in Pelagic Sediments of the Eastern Equatorial Atlantic: Suboxic Diagenesis. Geochimica et Cosmochimica Acta, 43(7): 1075–1090. doi: 10.1016/0016-7037(79)90095-4
    Glud, R. N., 2008. Oxygen Dynamics of Marine Sediments. Marine Biology Research, 4(4): 243–289. doi: 10.1080/17451000801888726
    Glud, R. N., Gundersen, J. K., Jørgensen, B. B., et al., 1994. Diffusive and Total Oxygen Uptake of Deep-Sea Sediments in the Eastern South Atlantic Ocean: In Situ and Laboratory Measurements. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 41(11–12): 1767–1788. doi: 10.1016/0967-0637(94)90072-8
    Glud, R. N., Wenzhöfer, F., Tengberg, A., et al., 2005. Distribution of Oxygen in Surface Sediments from Central Sagami Bay, Japan: In-Situ Measurements by Microelectrodes and Planar Optodes. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 52(10): 1974–1987. doi: 10.1016/j.dsr.2005.05.004
    Gundersen, J. K., Jørgensen, B. B., 1990. Microstructure of Diffusive Boundary Layers and the Oxygen Uptake of the Sea Floor. Nature, 345(6276): 604–607. doi: 10.1038/345604a0
    Holmkvist, L., Ferdelman, T. G., Jørgensen, B. B., 2011. A Cryptic Sulfur Cycle Driven by Iron in the Methane Zone of Marine Sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica Acta, 75(12): 3581–3599. doi: 10.1016/j.gca.2011.03.033
    Hulthe, G., Hulth, S., Hall, P. O. J., 1998. Effect of Oxygen on Degradation Rate of Refractory and Labile Organic Matter in Continental Margin Sediments. Geochimica et Cosmochimica Acta, 62(8): 1319–1328. doi: 10.1016/s0016-7037(98)00044-1
    Jeroschewski, P., Steuckart, C., Kühl, M., 1996. An Amperometric Microsensor for the Determination of H2S in Aquatic Environments. Analytical Chemistry, 68(24): 4351–4357. doi: 10.1021/ac960091b
    Jiang, C. H., Hu, J. W., Huang, X. F., et al., 2011. Phosphorus Speciation in Sediments of Lake Hongfeng, China. Chinese Journal of Oceanology and Limnology, 29(1): 53–62. doi: 10.1007/s00343-011-9047-4
    Jørgensen, B. B., Revsbech, N. P., 1983. Colorless Sulfur Bacteria Beggiatoa spp. and Thiovulum spp. in O2 and H2S Microgradients. Applied and environmental Microbiology, 45: 1261–1270 doi: 10.1128/aem.45.4.1261-1270.1983
    Kamp, A., Stief, P., Schulz-Vogt, H. N., 2006. Anaerobic Sulfide Oxidation with Nitrate by a Freshwater Beggiatoa Enrichment Culture. Applied and Environmental Microbiology, 72(7): 4755–4760. doi: 10.1128/aem.00163-06
    Kristensen, E., Holmer, M., 2001. Decomposition of Plant Materials in Marine Sediment Exposed to Different Electron Acceptors (O2, NO3-, and SO42-), with Emphasis on Substrate Origin, Degradation Kinetics, and the Role of Bioturbation. Geochimica et Cosmochimica Acta, 65(3): 419–433. doi: 10.1016/s0016-7037(00)00532-9
    Krom, M. D., Davison, P., Zhang, H., et al., 1994. High-Resolution Pore-Water Sampling with a Gel Sampler. Limnology and Oceanography, 39(8): 1967–1972. doi: 10.4319/lo.1994.39.8.1967
    Kuhl, M., Revsbech, N. P., 2001. Biogeochemical Microsensors for Boundary Layer Studies. In: Boudreau, B. P., Jørgensen, B. B., eds., The Benthic Boundary Layer. Oxford Univ. Press, Oxford. 180–210
    Kuivila, K. M., Murray, J. W., Devol, A. H., et al., 1989. Methane Production, Sulfate Reduction and Competition for Substrates in the Sediments of Lake Washington. Geochimica et Cosmochimica Acta, 53(2): 409–416. doi: 10.1016/0016-7037(89)90392-x
    Møller, M. M., Nielsen, L. P., Jørgensen, B. B., 1985. Oxygen Responses and Mat Formation by Beggiatoa sp. . Applied and Environmental Microbiology, 50: 373–382 doi: 10.1128/aem.50.2.373-382.1985
    Nelson, D. C., Jørgensen, B. B., Revsbech, N. P., 1986. Growth Pattern and Yield of a Chemoautotrophic Beggiatoa sp. in Oxygen-Sulfide Microgradients. Applied and Environmental Microbiology, 52(2): 225–233 doi: 10.1128/aem.52.2.225-233.1986
    Paerl, H. W., Pinckney, J. L., 1996. A Mini-Review of Microbial Consortia: Their Roles in Aquatic Production and Biogeochemical Cycling. Microbial Ecology, 31(3): 225–247. doi: 10.1007/bf00171569
    Pedersen, O., Pulido, C., Rich, S. M., et al., 2011. In Situ O2 Dynamics in Submerged Isoetes Australis: Varied Leaf Gas Permeability Influences Underwater Photosynthesis and Internal O2. Journal of Experimental Botany, 62(13): 4691–4700. doi: 10.1093/jxb/err193
    Rasmussen, H., Jørgensen, B., 1992. Microelectrode Studies of Seasonal Oxygen Uptake in a Coastal Sediment: Role of Molecular Diffusion. Marine Ecology Progress Series, 81: 289–303. doi: 10.3354/meps081289
    Reiners, C. E., Glud, R. N., 2000. In Situ Chemical Sensor Measurement at the Sediment-Water Interface. Chemical Sensors in Oceanography, 1: 249 http://www.researchgate.net/publication/291983783_Sensors_for_in_situ_pH_and_pCO2_measurements_in_seawater_and_at_the_sediment-water_interface
    Revsbech, N. P., 1989. An Oxygen Microsensor with a Guard Cathode. Limnology and Oceanography, 34(2): 474–478. doi: 10.4319/lo.1989.34.2.0474
    Revsbech, N. P., Jørgensen, B. B., 1986. Microelectrodes: Their Use in Microbial Ecology. Advances in Microbial Ecology, 9: 293–352 doi: 10.1007/978-1-4757-0611-6_7
    Risgaard-Petersen, N., Revil, A., Meister, P., et al., 2012. Sulfur, Iron-, and Calcium Cycling Associated with Natural Electric Currents Running through Marine Sediment. Geochimica et Cosmochimica Acta, 92: 1–13. doi: 10.1016/j.gca.2012.05.036
    Sayama, M., Risgaard-Petersen, N., Nielsen, L. P., et al., 2005. Impact of Bacterial NO3-Transport on Sediment Biogeochemistry. Applied and Environmental Microbiology, 71(11): 7575–7577. doi: 10.1128/aem.71.11.7575-7577.2005
    Schulz, H. N., de Beer, D., 2002. Uptake Rates of Oxygen and Sulfide Measured with Individual Thiomargarita Namibiensis Cells by Using Microelectrodes. Applied and Environmental Microbiology, 68(11): 5746–5749. doi: 10.1128/aem.68.11.5746-5749.2002
    Stal, L. J., Gemerden, H., Krumbein, W. E., 1985. Structure and Development of a Benthic Marine Microbial Mat. FEMS Microbiology Letters, 31(2): 111–125. doi: 10.1111/j.1574-6968.1985.tb01138.x
    Tankéré, S. P. C., Bourne, D. G., Muller, F. L. L., et al., 2002. Microenvironments and Microbial Community Structure in Sediments. Environmental Microbiology, 4(2): 97–105. doi: 10.1046/j.1462-2920.2002.00274.x
    Thamdrup, B., Finster, K., Fossing, H., et al., 1994. Thiosulfate and Sulfite Distributions in Porewater of Marine Sediments Related to Manganese, Iron, and Sulfur Geochemistry. Geochimica et Cosmochimica Acta, 58(1): 67–73. doi: 10.1016/0016-7037(94)90446-4
    Thauer, R. K., Jungerman, K., Decker, K., 1977. Energy Conservation in Chemotrophic Anaerobic Bacteria. Bacterial Review, 41: 100–180 http://mmbr.asm.org/content/41/3/809.full-text.pdf
    Wang, F. S., Liu, C. Q., Liang, X. B., et al., 2003. Microbial Sulfate Reduction and Isotopic Characteristics at Sediment-Water Interface of Aha Lake. Quaternary Sciences. 23(5): 582 (in Chinese) http://www.researchgate.net/publication/313707785_Microbial_Sulfate_Reduction_and_Isotopic_Characteristics_at_Sediment-Water_Interface_of_Aha_Lake
    Wang, J. F., Chen, J. A., Yang, Y. Q., et al., 2012. Physical and Chemical Characteristics of Water in Lake Hongfeng during the Disappearance of Seasonal Stratification. Research of Environmental Sciences, 25(8): 845–851 (in Chinese with English Abstract). doi: 10.13198/j.res.2012.08.4.wangjf.009
    Wu, F. C., Qing, H. R., Wan, G. J., et al., 1997. Geochemistry of HCO3 at the Sediment-Water Interface of Lakes from the Southwestern Chinese Plateau. Water, Air, & Soil Pollution, 99(1–4): 381–389. doi: 10.1007/bf02406878
    Xu, D., Wu, W., Ding, S. M., et al., 2012. A High-Resolution Dialysis Technique for Rapid Determination of Dissolved Reactive Phosphate and Ferrous Iron in Pore Water of Sediments. Science of the Total Environment, 421/422: 245–252. doi: 10.1016/j.scitotenv.2012.01.062
    Zhan, Y. H., Guo, H. M., Wang, Y., et al., 2014. Evolution of Groundwater Major Components in the Hebei Plain: Evidences from 30-Year Monitoring Data. Journal of Earth Science, 25(3): 563–574. doi: 10.1007/s12583-014-0445-3
    Zhang, L., Wang, L., Yin, K. D., et al., 2014. Spatial and Seasonal Variations of Nutrients in Sediment Profiles and Their Sediment-Water Fluxes in the Pearl River Estuary, Southern China. Journal of Earth Science, 25(1): 197–206. doi: 10.1007/s12583-014-0413-y
    Zhang, R. Y., Wu, F. C., Liu, C. Q., et al., 2008. Characteristics of Organic Phosphorus Fractions in Different Trophic Sediments of Lakes from the Middle and Lower Reaches of Yangtze River Region and Southwestern Plateau, China. Environmental Pollution, 152(2): 366–372. doi: 10.1016/j.envpol.2007.06.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(472) PDF downloads(247) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return