Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 6
Nov 2016
Turn off MathJax
Article Contents
Brahim Abdelkader, Arab Ahmed, Belkhatir Mostéfa, Shahrour Isam. Laboratory study of geotextiles performance on reinforced sandy soil. Journal of Earth Science, 2016, 27(6): 1060-1070. doi: 10.1007/s12583-015-0621-0
Citation: Brahim Abdelkader, Arab Ahmed, Belkhatir Mostéfa, Shahrour Isam. Laboratory study of geotextiles performance on reinforced sandy soil. Journal of Earth Science, 2016, 27(6): 1060-1070. doi: 10.1007/s12583-015-0621-0

Laboratory study of geotextiles performance on reinforced sandy soil

doi: 10.1007/s12583-015-0621-0
More Information
  • Corresponding author: Arab Ahmed: ah_arab@yahoo.fr
  • Received Date: 07 Jun 2015
  • Accepted Date: 09 Oct 2015
  • Publish Date: 01 Dec 2016
  • This paper presents the results of triaxial tests conducted for the investigation of the influence of geotextiles on stress-strain and volumetric change behaviour of reinforced sandy soil. Tests were carried out on loose sandy soil. The experimental program includes drained compression tests on samples reinforced with different values of both geotextiles layers (Ng) and confining pressure (σ′c). Two methods of preparation were used: air pluviation (AP) and moist tamping (MT). Test results show that the geotextiles induce a quasi-linear increase in the stress deviator (q) and volume contraction in the reinforced sand. Method of preparation significantly affects the shear strength; samples prepared by the air pluviation method and mobilized deviator stresses are significantly higher than those prepared by moist tamping method. Geotextiles restrict the dilation of reinforced sandy soil and consequently the contraction increases. The mobilized friction angle increases with increasing number of layers and decreases with increasing initial confining pressure. Samples prepared by moist tamping present mobilized friction angles significantly lower than those prepared by air pluviation method. For samples prepared by the air pluviation method, the secant modulus at ε1=1% and 5% decreases with increasing geotextile layers; those prepared by the moist tamping method, secant modulus at ε1=1% and 5% increases with increasing number of geotextile layer sand confining pressure. From 10% axial strain, secant modulus increases with increasing inclusions of geotextile layers.

     

  • loading
  • Al-Mahmoud, M., 1997. Etude en Laboratoire du Comportement des Sables Sous Faibles Contraintes: [Dissertation]. USTL Lille1, Villeneuve d'Ascq
    Arab, A., 1998. Behaviour of Chlef, O/Rass and Hostun Rf Sands under Monotonic and Cylic Loading: [Dissertation]. Hassiba Ben Bouali University of Chlef, Chlef (in French with English Abstract)
    Ashmawy, A. K., Bourdeau, P. L., 1998. Effect of Geotextile Reinforcement on the Stress-Strain and Volumetric Response of Sand. Proceedings of the 6th International Conference on Geosynthetics, Atlanta. 2: 1079–1082 http://www.researchgate.net/publication/288858321_Effect_of_geotextile_reinforcement_on_the_stress-strain_and_volumetric_response_of_sand
    Athanasopoulos, G. A., 1993. Effect of Particle Size on the Mechanical Behaviour of Sand-Geotextile Composites. Geotextiles and Geomembranes, 12(3): 255–273. doi: 10.1016/0266-1144(93)90029-n
    Broms, B. B., 1977. Triaxial Tests with Fabric-Reinforced Soil. Proceedings of International Conference on the Use of Fabric in Geotechnics, Ecole National des Ponts et Chaussees, Paris. 3: 129–134 http://ci.nii.ac.jp/naid/10007810088
    Duncan, J. M., Dunlop, P., 1968. The Significance of Cap and Base Restraint. Journal of Soil Mechanics and Foundation Division, ASCE, 94(1): 271–290 doi: 10.1061/JSFEAQ.0001087
    Durville, J. L., Méneroud, J. P., 1982. Geomorphological Phenomena Induced by the El Asnam Earthquake, Algeria. Bull. Liaison. Labo. Ponts. et Chaussées, Juillet-Août, 120: 13–23 (in French with English Abstract)
    Fukushima, S., Tatsuoka, F., 1984. Strength and Deformation Characteristics of Saturated Sand and Extremely Low Pressures. Soils and Foundations, 24: 11–54 doi: 10.3208/sandf1972.24.4_11
    Gray, D. H., Al-Refeai, T., 1986. Behavior of Fabric-Versus Fiber-Reinforced Sand. Journal of Geotechnical Engineering, 112(8): 804–820. doi: 10.1061/(asce)0733-9410(1986)112:8(804)
    Haeri, S. M., Noorzad, R., Oskoorouchi, A. M., 2000. Effect of Geotextile Reinforcement on the Mechanical Behavior of Sand. Geotextiles and Geomembranes, 18(6): 385–402. doi: 10.1016/s0266-1144(00)00005-4
    Houston, S. L., Perez-Garcia, N., Houston, W. N., 2008. Shear Strength and Shear-Induced Volume Change Behavior of Unsaturated Soils from a Triaxial Test Program. Journal of Geotechnical and Geoenvironmental Engineering, 134(11): 1619–1632. doi: 10.1061/(asce)1090-0241(2008)134:11(1619)
    Kolymbas, D., Wu, W., 1990. Recent Results of Triaxial Tests with Granular Materials. Powder Technology, 60(2): 99–119. doi: 10.1016/0032-5910(90)80136-m
    Krishnaswamy, N. R., Isaac, N. T., 1994. Liquefaction Potential of Reinforced Sand. Geotextiles and Geomembranes, 13(1): 23–41. doi: 10.1016/0266-1144(94)90055-8
    Ling, H. I., Tatsuoka, F., 1993. Laboratory Evaluation of a Nonwoven Geotextile for Reinforcing on Site Soil. Proceeding of Geosynthetics, 93(2): 533–546 http://www.researchgate.net/publication/288969672_Laboratory_evaluation_of_a_nonwoven_geotextile_for_reinforcing_on-site_soil
    McGowan, A., Andrawes, K. Z., Al-Hasani, M. M., 1978. Effect of Inclusion Properties on the Behaviour of Sand. Géotechnique, 28(3): 327–346. doi: 10.1680/geot.1978.28.3.327
    McKenzie, D., 1972. Active Tectonics of the Mediterranean Region. Geophysical Journal International, 30(2): 109–185. doi: 10.1111/j.1365-246x.1972.tb02351.x
    Papastamatiou, D., 1980. El-Asnam, Algeria Earthquake of October 10, 1980: Field Evidence of Ground Motion in the Epicentralregion. Geognosis, London
    Rothé, J. P., 1955. Earthquake of Orléansville and Seismicity of Algeria. Nature Journal, Paris, 3237: 1–9 (in French with English Abstract)
    Tang, C. S., Shi, B., Gao, W., et al., 2007. Strength and Mechanical Behavior of Short Polypropylene Fiber Reinforced and Cement Stabilized Clayey Soil. Geotextiles and Geomembranes, 25(3): 194–202. doi: 10.1016/j.geotexmem.2006.11.002
    Thevenin, J., 1955. The Effects of the Earthquake of September 1954 on Hydraulic Structures in the region of Orléanville. Revue Terre et Eaux, No 24, 1st Trimestre, Paris (in French with English Abstract)
    Unnikrishnan, N., Rajagopal, K., Krishnaswamy, N. R., 2002. Behaviour of Reinforced Clay under Monotonic and Cyclic Loading. Geotextiles and Geomembranes, 20(2): 117–133. doi: 10.1016/s0266-1144(02)00003-1
    Wang, G. H., Sassa, K., Fukuoka, H., et al., 2007. Experimental Study on the Shearing Behavior of Saturated Silty Soils Based on Ring-Shear Tests. Journal of Geotechnical and Geoenvironmental Engineering, 133(3): 319–333. doi: 10.1061/(asce)1090-0241(2007)133:3(319)
    Madhavi Latha, G., Murthy, V. S., 2007. Effects of Reinforcement form on the Behavior of Geosynthetic Reinforced Sand. Geotextiles and Geomembranes, 25(1): 23–32 doi: 10.1016/j.geotexmem.2006.09.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(3)

    Article Metrics

    Article views(527) PDF downloads(193) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return