Ahijado, A., Casillas, R., Hernández-Pacheco, A., 2001. The Dyke Swarms of the Amanay Massif, Fuerteventura, Canary Islands (Spain). Journal of Asian Earth Sciences, 19(3): 333-345. doi: 10.1016/s1367-9120(99)00066-8 |
Allen, C. M., 2000. Evolution of a Post-Batholith Dike Swarm in Central Coastal Queensland, Australia: Arc-Front to Backarc? Lithos, 51(4): 331-349. doi: 10.1016/s0024-4937(99)00068-7 |
Beier, C., Stracke, A., Haase, K. M., 2007. The Peculiar Geochemical Signatures of São Miguel (Azores) Lavas: Metasomatised or Recycled Mantle Sources? Earth and Planetary Science Letters, 259(1/2): 186-199. doi: 10.1016/j.epsl.2007.04.038 |
Bleeker, W., 2003. The Late Archean Record: A Puzzle in ca. 35 Pieces. Lithos, 71(2-4): 99-134. doi: 10.1016/j.lithos.2003.07.003 |
Chakrabarti, R., Basu, A. R., Paul, D. K., 2007. Nd-Hf-Sr-Pb Isotopes and Trace Element Geochemistry of Proterozoic Lamproites from Southern India: Subducted Komatiite in the Source. Chemical Geology, 236(3/4): 291-302. doi: 10.1016/j.chemgeo.2006.10.006 |
Chen, N. S., Gong, S. L., Sun, M., et al., 2009. Precambrian Evolution of the Quanji Block, Northeastern Margin of Tibet: Insights from Zircon U-Pb and Lu-Hf Isotope Compositions. Journal of Asian Earth Sciences, 35(3/4): 367-376. doi: 10.1016/j.jseaes.2008.10.004 |
Chen, N. S., Liao, F. X., Wang, L., et al., 2013a. Late Paleoproterozoic Multiple Metamorphic Events in the Quanji Massif: Links with Tarim and North China Cratons and Implications for Assembly of the Columbia Supercontinent. Precambrian Research, 228: 102-116. doi: 10.1016/j.precamres.2013.01.013 |
Chen, N. S., Gong, S. L., Xia, X. P., et al., 2013b. Zircon Hf Isotope of Yingfeng Rapakivi Granites from the Quanji Massif and ~2.7 Ga Crustal Growth. Journal of Earth Science, 24(1): 29-41. doi: 10.1007/s12583-013-0309-2 |
Chen, N. S., Wang, Q. Y., Chen, Q., et al., 2007. Components and Metamorphism of the Basements of the Qaidam and Oulongbuluke Micro-Continental Blocks, and a Tentative Interpretation of Paleocontinental Evolution in NW-Central China. Earth Science Frontiers, 14: 43-55 (in Chinese with English Abstract) http://www.researchgate.net/publication/279572147_Onstraints_on_timing_of_the_early-Paleoproterozoic_magmatism_and_crustal_evolution_of_the_Oulongbuluke_microcontinent_U-Pb_and_Lu-Hf_isotope_systematics_of_zircons_from_Mohe_granitic_pluton |
Chen, N. S., Zhang, L., Sun, M., et al., 2012. U-Pb and Hf Isotopic Compositions of Detrital Zircons from the Paragneisses of the Quanji Massif, NW China: Implications for Its Early Tectonic Evolutionary History. Journal of Asian Earth Sciences, 54/55: 110-130. doi: 10.1016/j.jseaes.2012.04.006 |
Choi, S. H., Mukasa, S. B., Kwon, S. T., et al., 2006. Sr, Nd, Pb and Hf Isotopic Compositions of Late Cenozoic Alkali Basalts in South Korea: Evidence for Mixing between the Two Dominant Asthenospheric Mantle Domains beneath East Asia. Chemical Geology, 232(3/4): 134-151. doi: 10.1016/j.chemgeo.2006.02.014 |
Condie, K. C., Viljoen, M. J., Kable, E. J. D., 1977. Effects of Alteration on Element Distributions in Archean Tholeiites from the Barberton Greenstone Belt, South Africa. Contributions to Mineralogy and Petrology, 64(1): 75-89. doi: 10.1007/bf00375286 |
Condie, K. C., 1997. Sources of Proterozoic Mafic Dyke Swarms: Constraints from Th/Ta and La/Yb Ratios. Precambrian Research, 81(1/2): 3-14. doi: 10.1016/s0301-9268(96)00020-4 |
Cullers, R. L., Yeh, L. T., Chaudhuri, S., et al., 1974. Rare Earth Elements in Silurian Pelitic Schists from N.W. Maine. Geochimica et Cosmochimica Acta, 38(3): 389-400. doi: 10.1016/0016-7037(74)90133-1 |
Damian Nance, R., Brendan Murphy, J., Santosh, M., 2014. The Supercontinent Cycle: A Retrospective Essay. Gondwana Research, 25(1): 4-29. doi: 10.1016/j.gr.2012.12.026 |
Ernst, R. E., Bleeker, W., Söderlund, U., et al., 2013. Large Igneous Provinces and Supercontinents: Toward Completing the Plate Tectonic Revolution. Lithos, 174: 1-14. doi: 10.1016/j.lithos.2013.02.017 |
Ernst, R. E., Buchan, K. L., 2001a. Large Mafic Magmatic Events through Time and Links to Mantle Plume Heads. In: Ernst, R. E., Buchan, K. L., eds., Mantle Plumes: Their Identification through Time. Special Paper Geological Society of America, 352: 483-575 |
Ernst, R. E., Buchan, K. L., 2001b. The Use of Mafic Dike Swarms in Identifying and Locating Mantle Plumes. In: Ernst, R. E., Buchan, K. L., eds., Mantle Plumes: Their Identification through Time. Special Paper Geological Society of America, 352: 247-265 |
Ernst, R. E., Buchan, K. L., 1997. Giant Radiating Dyke Swarms: Their Use in Identifying Pre-Mesozoic Large Igneous Provinces and Mantle Plumes. In: Mahoney, J. J., Coffin, M. E., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph, 100: 297-333 |
Ernst, R. E., Head, J. W., Parfitt, E., et al., 1995. Giant Radiating Dyke Swarms on Earth and Venus. Earth-Science Reviews, 39(1/2): 1-58. doi: 10.1016/0012-8252(95)00017-5 |
Ernst, R. E., Wingate, M. T. D., Buchan, K. L., et al., 2008. Global Record of 1 600-700 Ma Large Igneous Provinces (LIPs): Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research, 160(1/2): 159-178. doi: 10.1016/j.precamres.2007.04.019 |
Fan, W. M., Guo, F., Wang, Y. J., et al., 2004. Late Mesozoic Volcanism in the Northern Huaiyang Tectono-Magmatic Belt, Central China: Partial Melts from a Lithospheric Mantle with Subducted Continental Crust Relicts beneath the Dabie Orogen? Chemical Geology, 209(1/2): 27-48. doi: 10.1016/j.chemgeo.2004.04.020 |
Ge, R. F., Zhu, W. B., Wu, H. L., et al., 2013. Zircon U-Pb Ages and Lu-Hf Isotopes of Paleoproterozoic Metasedimentary Rocks in the Korla Complex, NW China: Implications for Metamorphic Zircon Formation and Geological Evolution of the Tarim Craton. Precambrian Research, 231: 1-18. doi: 10.1016/j.precamres.2013.03.003 |
Geringer, G. J., 1979. The Origin and Tectonic Setting of Amphibolites in Part of Namaqua Metamorphic Belt, South Africa, Traa'. Geological Society South Africa, 82: 287-303 |
Goldberg, A. S., 2010. Dyke Swarms as Indicators of Major Extensional Events in the 1.9-1.2 Ga Columbia Supercontinent. Journal of Geodynamics, 50(3/4): 176-190. doi: 10.1016/j.jog.2010.01.017 |
Gong, S. L., Chen, N. S., Wang, Q. Y., et al., 2012. Early Paleoproterozoic Magmatism in the Quanji Massif, Northeastern Margin of the Qinghai-Tibet Plateau and Its Tectonic Significance: LA-ICPMS U-Pb Zircon Geochronology and Geochemistry. Gondwana Research, 21(1): 152-166. doi: 10.1016/j.gr.2011.07.011 |
Gong, S. L., Chen, N. S., Geng, H. Y., et al., 2014. Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 25(1): 74-86. doi: 10.1007/s12583-014-0401-2 |
Gust, D., Arculus, R. J., Kersting, A. B., 1997. Aspects of Magma Sources and Processes in the Honshu Arc. The Canadian Mineralogist, 35: 347-365 http://www.researchgate.net/publication/285747096_Aspects_of_magma_sources_and_processes_in_the_Honshu_arc |
Harlan, S. S., Geissman, J. W., Snee, L. W., 2008. Paleomagnetism of Proterozoic Mafic Dikes from the Tobacco Root Mountains, Southwest Montana. Precambrian Research, 163(3/4): 239-264. doi: 10.1016/j.precamres.2007.12.002 |
Hoffman, P. F., 1997. Tectonic Genealogy of North America. In: van der Pluijm, B. A., Marshak, S., eds., Earth Structure: An Introduction to Structural Geology and Tectonics. McGraw-Hill, New York. 459-464 |
Hofmann, A. W., Jochum, K. P., 1996. Source Characteristics Derived from very Incompatible Trace Elements in Mauna Loa and Mauna Kea Basalts, Hawaii Scientific Drilling Project. Journal of Geophysical Research: Solid Earth, 101(B5): 11831-11839. doi: 10.1029/95jb03701 |
Hou, G. T., 2012. Mechanism for Three Types of Mafic Dyke Swarms. Geoscience Frontiers, 3(2): 217-223. doi: 10.1016/j.gsf.2011.10.003 |
Huang, W., Zhang, L., Ba, J., et al., 2011. Detrital Zircon LA-ICP-MS U-Pb Dating for K-feldspar Leptite of Quanji Massif in the North Margin of Qaidam Block: Constraint on the Age of Dakendaban Group. Geological Bulletin of China, 30: 1353-1359 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252284596.html |
Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600. doi: 10.1016/s0016-7037(96)00349-3 |
Kusky, T. M., Li, J. H., Santosh, M., 2007. The Paleoproterozoic North Hebei Orogen: North China Craton's Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1/2): 4-28. doi: 10.1016/j.gr.2006.11.012 |
Kusky, T. M., Santosh, M., 2009. The Columbia Connection in North China. Geological Society, London, Special Publications, 323(1): 49-71. doi: 10.1144/sp323.3 |
La Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3/4): 115-136. doi: 10.1016/s0009-2541(98)00002-3 |
Li, X. H., Liu, D. Y., Sun, M., et al., 2004. Precise Sm-Nd and U-Pb Isotopic Dating of the Supergiant Shizhuyuan Polymetallic Deposit and Its Host Granite, SE China. Geological Magazine, 141(2): 225-231. doi: 10.1017/s0016756803008823 |
Liao, F. X., Zhang, L., Wang Q. Y., et al., 2014. Geochronology and Geochemistry of the Dike-Swarm Garnet-Free Amphibolites in the Quanji Massif, NW China: Late Paleoproterozoic Back Arc Magmatism and Links to Amalgamation of the Tarim and North China Cratons and Assembly of the Columbia Supercontinent. Precambrian Research, 249: 33-56 http://www.sciencedirect.com/science/article/pii/S0301926814001442 |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 |
Lu, J. S., Wang, G. D., Wang, H., et al., 2013. Metamorphic P-T-t Paths Retrieved from the Amphibolites, Lushan Terrane, Henan Province and Reappraisal of the Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen. Precambrian Research, 238: 61-77. doi: 10.1016/j.precamres.2013.09.019 |
Lu, S. N., 2002. Preliminary Study of Precambrian Geology in the Northern Tibet-Qinghai Plateau. Geological Publishing House, Beijing (in Chinese) |
Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1/2): 94-107. doi: 10.1016/j.precamres.2007.04.025 |
Ma, X. X., Shu, L. S., Santosh, M., et al., 2013. Paleoproterozoic Collisional Orogeny in Central Tianshan: Assembling the Tarim Block within the Columbia Supercontinent. Precambrian Research, 228: 1-19. doi: 10.1016/j.precamres.2013.01.009 |
Mayborn, K. R., Lesher, C. E., 2004. Paleoproterozoic Mafic Dike Swarms of Northeast Laurentia: Products of Plumes or Ambient Mantle? Earth and Planetary Science Letters, 225(3/4): 305-317. doi: 10.1016/j.epsl.2004.06.014 |
Meert, J. G., 2002. Paleomagnetic Evidence for a Paleo-Mesoproterozoic Supercontinent Columbia. Gondwana Research, 5(1): 207-215. doi: 10.1016/s1342-937x(05)70904-7 |
Meert, J. G., 2012. What's in a Name? The Columbia (Paleopangaea/Nuna) Supercontinent. Gondwana Research, 21(4): 987-993. doi: 10.1016/j.gr.2011.12.002 |
Mohanty, S., 2012. Spatio-Temporal Evolution of the Satpura Mountain Belt of India: A Comparison with the Capricorn Orogen of Western Australia and Implication for Evolution of the Supercontinent Columbia. Geoscience Frontiers, 3(3): 241-267. doi: 10.1016/j.gsf.2011.10.005 |
McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3/4): 358-374. doi: 10.1016/0012-821x(91)90029-h |
Park, J. K., Buchan, K. L., Harlan, S. S., 1995. A Proposed Giant Radiating Dyke Swarm Fragmented by the Separation of Laurentia and Australia Based on Paleomagnetism of ca. 780 Ma Mafic Intrusions in Western North America. Earth and Planetary Science Letters, 132(1-4): 129-139. doi: 10.1016/0012-821x(95)00059-l |
Pearce, J. A., 1996. A User's Guide to Basalt Discrimination Diagrams. In: Wyman, D. A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration. Geological Association of Canada, Short Course Notes, 12: 79-113 |
Pearce, J. A., 1982. Trace Element Characteristics of the Lava from Destructive Plate Boundaries in Andesites. John Wiley and Sons, Chichester. 525-547 |
Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. doi: 10.1007/bf00375192 |
Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. doi: 10.1016/0012-821x(73)90129-5 |
Peng, P., Zhai, M. G., Guo, J. H., et al., 2007. Nature of Mantle Source Contributions and Crystal Differentiation in the Petrogenesis of the 1.78 Ga Mafic Dykes in the Central North China Craton. Gondwana Research, 12(1/2): 29-46. doi: 10.1016/j.gr.2006.10.022 |
Piper, J. D. A., Zhang, J. S., Huang, B., et al., 2011. Palaeomagnetism of Precambrian Dyke Swarms in the North China Shield: The ~1.8 Ga LIP Event and Crustal Consolidation in Late Palaeoproterozoic Times. Journal of Asian Earth Sciences, 41(6): 504-524. doi: 10.1016/j.jseaes.2011.03.010 |
Roberts, N. M. W., 2013. The Boring Billion? Lid Tectonics, Continental Growth and Environmental Change Associated with the Columbia Supercontinent. Geoscience Frontiers, 4(6): 681-691. doi: 10.1016/j.gsf.2013.05.004 |
Rogers, J. J. W., 1996. A History of Continents in the Past Three Billion Years. The Journal of Geology, 104(1): 91-107. doi: 10.1086/629803 |
Rogers, J. J. W., 2012. Did Natural Fission of 235U in the Earth Lead to Formation of the Supercontinent Columbia? Geoscience Frontiers, 3(4): 369-374. doi: 10.1016/j.gsf.2012.03.005 |
Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia: A Mesoproterozoic Supercontinent. Gondwana Research, 5(1): 5-22. doi: 10.1016/s1342-937x(05)70883-2 |
Rogers, J. J. W., Santosh, M., 2003. Supercontinents in Earth History. Gondwana Research, 6(3): 357-368. doi: 10.1016/s1342-937x(05)70993-x |
Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, New York. 352 |
Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267-309. doi: 10.1029/95rg01302 |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust. Elsevier-Pergamon, Oxford, 3: 1-64 |
Santosh, M., 2010. Assembling North China Craton within the Columbia Supercontinent: The Role of Double-Sided Subduction. Precambrian Research, 178(1-4): 149-167. doi: 10.1016/j.precamres.2010.02.003 |
Santosh, M., Liu, D. Y., Shi, Y. R., et al., 2013. Paleoproterozoic Accretionary Orogenesis in the North China Craton: A SHRIMP Zircon Study. Precambrian Research, 227: 29-54. doi: 10.1016/j.precamres.2011.11.004 |
Santosh, M., Maruyama, S., Komiya, T., et al., 2010. Orogens in the Evolving Earth: From Surface Continents to 'Lost Continents' at the Core-Mantle Boundary. Geological Society, London, Special Publications, 338(1): 77-116. doi: 10.1144/sp338.5 |
Santosh, M., Tsunogae, T., Li, J. H., et al., 2007a. Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3): 263-285. doi: 10.1016/j.gr.2006.10.009 |
Santosh, M., Wilde, S., Li, J., 2007b. Timing of Paleoproterozoic Ultrahigh-Temperature Metamorphism in the North China Craton: Evidence from SHRIMP U-Pb Zircon Geochronology. Precambrian Research, 159(3/4): 178-196. doi: 10.1016/j.precamres.2007.06.006 |
Shinjo, R., Chung, S. L., Kato, Y., et al., 1999. Geochemical and Sr-Nd Isotopic Characteristics of Volcanic Rocks from the Okinawa Trough and Ryukyu Arc: Implications for the Evolution of a Young, Intracontinental Back Arc Basin. Journal of Geophysical Research: Solid Earth, 104(B5): 10591-10608. doi: 10.1029/1999jb900040 |
Sklyarov, E., Gladkochub, D. P., Mazukabzov, A. M., et al., 2003. Neoproterozoic Mafic Dike Swarms of the Sharyzhalgai Metamorphic Massif, Southern Siberian Craton. Precambrian Research, 122(1-4): 359-376. doi: 10.1016/s0301-9268(02)00219-x |
Sobolev, A. V., Hofmann, A. W., Nikogosian, I. K., 2000. Recycled Oceanic Crust Observed in 'Ghost Plagioclase' within the Source of Mauna Loa Lavas. Nature, 404: 986-990 doi: 10.1038/35010098 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/gsl.sp.1989.042.01.19 |
Tanaka, T., Togashi, S., Kamioka, H., et al., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with LaJolla Neodymium. Chemical Geology, 168(3/4): 279-281. doi: 10.1016/s0009-2541(00)00198-4 |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford Press. 1-312 |
Taylor, P. N., Jones, N. W., Moorbuth, S., 1984. Isotopic Assessment of Relative Contributions from Crust and Mantle Sources to Magma Genesis of Precambrian Granitoid Rocks. Phil. Trans. Research Society London, A310: 605-625 http://rsta.royalsocietypublishing.org/content/310/1514/605.abstract |
Thompson, R. N., Morrison, M. A., 1988. Asthenospheric and Lower-Lithospheric Mantle Contributions to Continental Extensional Magmatism: An Example from the British Tertiary Province. Chemical Geology, 68(1/2): 1-15. doi: 10.1016/0009-2541(88)90082-4 |
Trap, P., Faure, M., Lin, W., et al., 2012. Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen: Toward a Comprehensive Model. Precambrian Research, 222/223: 191-211. doi: 10.1016/j.precamres.2011.09.008 |
Walker, K. R., Joplin, G. A., Lovering, J. F., et al., 1959. Metamorphic and Metasomatic Convergence of Basic Igneous Rocks and Lime-Magnesia Sediments of the Precambrian of North-Western Queensland. Journal of the Geological Society of Australia, 6(2): 149-177. doi: 10.1080/00167615908728504 |
Wan, Y. S., Zhang, J. X., Yang, J. S., et al., 2006. Geochemistry of High-Grade Metamorphic Rocks of the North Qaidam Mountains and Their Geological Significance. Journal of Asian Earth Sciences, 28(2/3): 174-184. doi: 10.1016/j.jseaes.2005.09.018 |
Wang, Q. Y., 2009. Components, Petrogenesis and Polymetamorphism of the Supracrustal Sequences of the Quanji Block Basement in Delingha Region, NW China, and Tectonic Evolution: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract) |
Wang, Q. Y., Chen, N. S., Li, X. Y., et al., 2008. LA-ICPMS Zircon U-Pb Geochronological Constraints on the Tectonothermal Evolution of the Early Paleoproterozoic Dakendaban Group in the Quanji Block, NW China. Science Bulletin, 53(18): 2849-2858. doi: 10.1007/s11434-008-0265-x |
Wang, Y. J., Zhao, G. C., Fan, W. M., et al., 2007. LA-ICP-MS U-Pb Zircon Geochronology and Geochemistry of Paleoproterozoic Mafic Dykes from Western Shandong Province: Implications for Back-Arc Basin Magmatism in the Eastern Block, North China Craton. Precambrian Research, 154(1/2): 107-124. doi: 10.1016/j.precamres.2006.12.010 |
Wang, Y. J., Zhao, G. C., Cawood, P. A., et al., 2008. Geochemistry of Paleoproterozoic (~1 770 Ma) Mafic Dikes from the Trans-North China Orogen and Tectonic Implications. Journal of Asian Earth Sciences, 33(1/2): 61-77. doi: 10.1016/j.jseaes.2007.10.018 |
Wilde, S. A., Zhao, G. C., 2005. Archean to Paleoproterozoic Evolution of the North China Craton. Journal of Asian Earth Sciences, 24(5): 519-522. doi: 10.1016/j.jseaes.2004.06.004 |
Wilde, S. A., Zhao, G. C., Sun, M., 2002. Development of the North China Craton during the Late Archaean and Its Final Amalgamation at 1.8 Ga: Some Speculations on Its Position within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 5(1): 85-94. doi: 10.1016/s1342-937x(05)70892-3 |
Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectono-Magmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. doi: 10.1016/0012-821x(80)90116-8 |
Wu, F. Y., Zhao, G. C., Wilde, S. A., et al., 2005. Nd Isotopic Constraints on Crustal Formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523-545. doi: 10.1016/j.jseaes.2003.10.011 |
Xia, X. P., Sun, M., Zhao, G. C., et al., 2006. LA-ICP-MS U-Pb Geochronology of Detrital Zircons from the Jining Complex, North China Craton and Its Tectonic Significance. Precambrian Research, 144(3/4): 199-212. doi: 10.1016/j.precamres.2005.11.004 |
Xiao, Q. H., 2004. Age of Yingfeng Rapakivi Granite Pluton on the North Flank of Qaidam and Its Geological Significance. Science in China Series D: Earth Sciences, 47(4): 357-365. doi: 10.1360/02yd0472 |
Xu, Z. Q., Yang, J. S., Wu, C. L., et al., 2006. Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 28(2/3): 160-173. doi: 10.1016/j.jseaes.2005.09.016 |
Yang, J. H., Sun, J. F., Chen, F., et al., 2007. Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-Collisional Lithosphere Thinning of the Eastern North China Craton. Journal of Petrology, 48(10): 1973-1997. doi: 10.1093/petrology/egm046 |
Yin, C. Q., Zhao, G. C., Sun, M., et al., 2009. LA-ICP-MS U-Pb Zircon Ages of the Qianlishan Complex: Constrains on the Evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research, 174(1/2): 78-94. doi: 10.1016/j.precamres.2009.06.008 |
Zhai, M. G., Santosh, M., 2013. Metallogeny of the North China Craton: Link with Secular Changes in the Evolving Earth. Gondwana Research, 24(1): 275-297. doi: 10.1016/j.gr.2013.02.007 |
Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. doi: 10.1016/j.gr.2011.02.005 |
Zhang, C. L., Li, Z. X., Li, X. H., et al., 2009. Neoproterozoic Mafic Dyke Swarms at the Northern Margin of the Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 35(2): 167-179. doi: 10.1016/j.jseaes.2009.02.003 |
Zhang, J. X., Wan, Y. S., Xu, Z. Q., et al., 2001. Discovery of Basic Granulite and Its Formation Age in Delingha Area, North Qaidam Mountains. Acta Petrologica Sinica, 17: 453-458 (in Chinese with English Abstract) http://www.researchgate.net/publication/279543442_Discovery_of_a_basic_granulite_and_its_formation_age_in_Delingha_area_North_Qaidam_monutains |
Zhang, L., Liao, F. X., Ba, J., et al., 2011. Mineral Evolution and Zircon Geochronology of Mafic Enclave in Granitic Gneiss of the Quanji Block and Implications for Paleoproterozoic Regional Metamorphism. Earth Science Frontiers, 18: 79-84 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201102010.htm |
Zhang, L., Wang, Q. Y., Chen, N. S., et al., 2014. Geochemistry and Detrital Zircon U-Pb and Hf Isotopes of the Paragneiss Suite from the Quanji Massif, SE Tarim Craton: Implications for Paleoproterozoic Tectonics in NW China. Journal of Asian Earth Sciences, 95: 33-50. doi: 10.1016/j.jseaes.2014.05.014 |
Zhao, G. C., 2001. Palaeoproterozoic Assembly of the North China Craton. Geological Magazine, 138(1): 87-91. doi: 10.1017/s0016756801005040 |
Zhao, G. C., Kroner, A., 2007. Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth: Discussion. Geological Society of America Bulletin, 119(3/4): 487-489. doi: 10.1130/b26022.1 |
Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1998. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Review, 40(8): 706-721. doi: 10.1080/00206819809465233 |
Zhao, G. C., Cawood, P. A., Lu, L. Z., 1999. Petrology and P-T History of the Wutai Amphibolites: Implications for Tectonic Evolution of the Wutai Complex, China. Precambrian Research, 93(2/3): 181-199. doi: 10.1016/s0301-9268(98)00090-4 |
Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1/2): 55-88. doi: 10.1016/s0301-9268(00)00076-0 |
Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1/2): 45-73. doi: 10.1016/s0301-9268(00)00154-6 |
Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002a. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1-4): 125-162. doi: 10.1016/s0012-8252(02)00073-9 |
Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2002b. SHRIMP U-Pb Zircon Ages of the Fuping Complex: Implications for Late Archean to Paleoproterozoic Accretion and Assembly of the North China Craton. American Journal of Science, 302(3): 191-226. doi: 10.2475/ajs.302.3.191 |
Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002c. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1-4): 125-162. doi: 10.1016/s0012-8252(02)00073-9 |
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002 |
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 67(1/2): 91-123. doi: 10.1016/j.earscirev.2004.02.003 |
Zhao, G. C., Wilde, S. A., Guo, J. H., et al., 2010. Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton. Precambrian Research, 177(3/4): 266-276. doi: 10.1016/j.precamres.2009.12.007 |
Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13-54. doi: 10.1016/j.precamres.2012.09.017 |
Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. doi: 10.1016/j.gr.2012.08.016 |
Zhao, G. C., 2014. Precambrian Evolution of the North China Craton. Elsevier, Amsterdam. 194 |
Zhao, J. H., Hu, R. Z., Zhou, M. F., et al., 2007. Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937-952. doi: 10.1017/s0016756807003834 |
Zhao, J. H., Zhou, M. F., Zheng, J. P., 2010. Metasomatic Mantle Source and Crustal Contamination for the Formation of the Neoproterozoic Mafic Dike Swarm in the Northern Yangtze Block, South China. Lithos, 115(1-4): 177-189. doi: 10.1016/j.lithos.2009.12.001 |
Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3/4): 152-168. doi: 10.1016/j.lithos.2008.09.017 |
Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189-1206. doi: 10.1016/j.gr.2012.10.001 |
Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. doi: 10.1146/annurev.ea.14.050186.002425 |
Zou, H. B., Zindler, A., Xu, X. S., et al., 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1/2): 33-47. doi: 10.1016/s0009-2541(00)00243-6 |