Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 4
Jul 2016
Turn off MathJax
Article Contents
Hassan Abdelslam Mustafa, Qinyan Wang, Nengsong Chen, Fanxi Liao, Min Sun, Meshaal Abdelgadir Salih. Geochemistry of metamafic dykes from the Quanji massif: Petrogenesis and further evidence for oceanic subduction, Late Paleoproterozoic, NW China. Journal of Earth Science, 2016, 27(4): 529-544. doi: 10.1007/s12583-015-0659-z
Citation: Hassan Abdelslam Mustafa, Qinyan Wang, Nengsong Chen, Fanxi Liao, Min Sun, Meshaal Abdelgadir Salih. Geochemistry of metamafic dykes from the Quanji massif: Petrogenesis and further evidence for oceanic subduction, Late Paleoproterozoic, NW China. Journal of Earth Science, 2016, 27(4): 529-544. doi: 10.1007/s12583-015-0659-z

Geochemistry of metamafic dykes from the Quanji massif: Petrogenesis and further evidence for oceanic subduction, Late Paleoproterozoic, NW China

doi: 10.1007/s12583-015-0659-z
More Information
  • Corresponding author: Nengsong Chen, chennengsong@163.com
  • Received Date: 18 Jun 2015
  • Accepted Date: 05 Nov 2016
  • Publish Date: 12 Jul 2016
  • A suite of ~1.84–1.92 Ga metamafic dykes within the paragneiss suite (khondalite) of the Quanji massif in NW China, has been chosen in this study for further understanding the tectonic evolution and possible links to the global Columbia supercontinent. Occurrence and field relations suggest that they were formed coevally with a previous studied ~1.83–1.85 Ga metamafic dyke swarms. Whole-rock major and trace elemental geochemistry suggests precursor magma of the amphibolites being generated from a volcanic arc-related tectonic setting rather than a back-arc environment where the metamafic dyke swarms were emplaced. The metamafic dykes show enrichment of LREE and strongly negative anomalies for Ta-Nb, Zr-Hf and Ti, have high SiO2 (49.3 wt.%–52.5 wt.%) but low MgO (6.40 wt.%–7.76 wt.%) contents and Mg# (Mg#=[100×(MgO/40.3)]/[MgO/40.3+FeO/71.8]) values (45.7–52.1), suggesting evolved precursor magma. The high values of La/Ta (22.2–42.8) and La/Nb (1.71–2.47), mildly negative εNd(t) values (-2.51–0.15), with depleted mantle model ages (TDM) of 2.45–2.84 Ga, suggest that their precursor magmas were possibly derived from a subduction-related fluid metasomatized Archean sub-continental lithospheric mantle. This study provides further evidence for oceanic plate subduction prevailing before or around ~1.85 Ga, which confirms a prolonged subduction-accretion-collision history in the NW China which is possibly linked to the assembly of the Columbia supercontinent.

     

  • loading
  • Ahijado, A., Casillas, R., Hernández-Pacheco, A., 2001. The Dyke Swarms of the Amanay Massif, Fuerteventura, Canary Islands (Spain). Journal of Asian Earth Sciences, 19(3): 333-345. doi: 10.1016/s1367-9120(99)00066-8
    Allen, C. M., 2000. Evolution of a Post-Batholith Dike Swarm in Central Coastal Queensland, Australia: Arc-Front to Backarc? Lithos, 51(4): 331-349. doi: 10.1016/s0024-4937(99)00068-7
    Beier, C., Stracke, A., Haase, K. M., 2007. The Peculiar Geochemical Signatures of São Miguel (Azores) Lavas: Metasomatised or Recycled Mantle Sources? Earth and Planetary Science Letters, 259(1/2): 186-199. doi: 10.1016/j.epsl.2007.04.038
    Bleeker, W., 2003. The Late Archean Record: A Puzzle in ca. 35 Pieces. Lithos, 71(2-4): 99-134. doi: 10.1016/j.lithos.2003.07.003
    Chakrabarti, R., Basu, A. R., Paul, D. K., 2007. Nd-Hf-Sr-Pb Isotopes and Trace Element Geochemistry of Proterozoic Lamproites from Southern India: Subducted Komatiite in the Source. Chemical Geology, 236(3/4): 291-302. doi: 10.1016/j.chemgeo.2006.10.006
    Chen, N. S., Gong, S. L., Sun, M., et al., 2009. Precambrian Evolution of the Quanji Block, Northeastern Margin of Tibet: Insights from Zircon U-Pb and Lu-Hf Isotope Compositions. Journal of Asian Earth Sciences, 35(3/4): 367-376. doi: 10.1016/j.jseaes.2008.10.004
    Chen, N. S., Liao, F. X., Wang, L., et al., 2013a. Late Paleoproterozoic Multiple Metamorphic Events in the Quanji Massif: Links with Tarim and North China Cratons and Implications for Assembly of the Columbia Supercontinent. Precambrian Research, 228: 102-116. doi: 10.1016/j.precamres.2013.01.013
    Chen, N. S., Gong, S. L., Xia, X. P., et al., 2013b. Zircon Hf Isotope of Yingfeng Rapakivi Granites from the Quanji Massif and ~2.7 Ga Crustal Growth. Journal of Earth Science, 24(1): 29-41. doi: 10.1007/s12583-013-0309-2
    Chen, N. S., Wang, Q. Y., Chen, Q., et al., 2007. Components and Metamorphism of the Basements of the Qaidam and Oulongbuluke Micro-Continental Blocks, and a Tentative Interpretation of Paleocontinental Evolution in NW-Central China. Earth Science Frontiers, 14: 43-55 (in Chinese with English Abstract) http://www.researchgate.net/publication/279572147_Onstraints_on_timing_of_the_early-Paleoproterozoic_magmatism_and_crustal_evolution_of_the_Oulongbuluke_microcontinent_U-Pb_and_Lu-Hf_isotope_systematics_of_zircons_from_Mohe_granitic_pluton
    Chen, N. S., Zhang, L., Sun, M., et al., 2012. U-Pb and Hf Isotopic Compositions of Detrital Zircons from the Paragneisses of the Quanji Massif, NW China: Implications for Its Early Tectonic Evolutionary History. Journal of Asian Earth Sciences, 54/55: 110-130. doi: 10.1016/j.jseaes.2012.04.006
    Choi, S. H., Mukasa, S. B., Kwon, S. T., et al., 2006. Sr, Nd, Pb and Hf Isotopic Compositions of Late Cenozoic Alkali Basalts in South Korea: Evidence for Mixing between the Two Dominant Asthenospheric Mantle Domains beneath East Asia. Chemical Geology, 232(3/4): 134-151. doi: 10.1016/j.chemgeo.2006.02.014
    Condie, K. C., Viljoen, M. J., Kable, E. J. D., 1977. Effects of Alteration on Element Distributions in Archean Tholeiites from the Barberton Greenstone Belt, South Africa. Contributions to Mineralogy and Petrology, 64(1): 75-89. doi: 10.1007/bf00375286
    Condie, K. C., 1997. Sources of Proterozoic Mafic Dyke Swarms: Constraints from Th/Ta and La/Yb Ratios. Precambrian Research, 81(1/2): 3-14. doi: 10.1016/s0301-9268(96)00020-4
    Cullers, R. L., Yeh, L. T., Chaudhuri, S., et al., 1974. Rare Earth Elements in Silurian Pelitic Schists from N.W. Maine. Geochimica et Cosmochimica Acta, 38(3): 389-400. doi: 10.1016/0016-7037(74)90133-1
    Damian Nance, R., Brendan Murphy, J., Santosh, M., 2014. The Supercontinent Cycle: A Retrospective Essay. Gondwana Research, 25(1): 4-29. doi: 10.1016/j.gr.2012.12.026
    Ernst, R. E., Bleeker, W., Söderlund, U., et al., 2013. Large Igneous Provinces and Supercontinents: Toward Completing the Plate Tectonic Revolution. Lithos, 174: 1-14. doi: 10.1016/j.lithos.2013.02.017
    Ernst, R. E., Buchan, K. L., 2001a. Large Mafic Magmatic Events through Time and Links to Mantle Plume Heads. In: Ernst, R. E., Buchan, K. L., eds., Mantle Plumes: Their Identification through Time. Special Paper Geological Society of America, 352: 483-575
    Ernst, R. E., Buchan, K. L., 2001b. The Use of Mafic Dike Swarms in Identifying and Locating Mantle Plumes. In: Ernst, R. E., Buchan, K. L., eds., Mantle Plumes: Their Identification through Time. Special Paper Geological Society of America, 352: 247-265
    Ernst, R. E., Buchan, K. L., 1997. Giant Radiating Dyke Swarms: Their Use in Identifying Pre-Mesozoic Large Igneous Provinces and Mantle Plumes. In: Mahoney, J. J., Coffin, M. E., eds., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph, 100: 297-333
    Ernst, R. E., Head, J. W., Parfitt, E., et al., 1995. Giant Radiating Dyke Swarms on Earth and Venus. Earth-Science Reviews, 39(1/2): 1-58. doi: 10.1016/0012-8252(95)00017-5
    Ernst, R. E., Wingate, M. T. D., Buchan, K. L., et al., 2008. Global Record of 1 600-700 Ma Large Igneous Provinces (LIPs): Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research, 160(1/2): 159-178. doi: 10.1016/j.precamres.2007.04.019
    Fan, W. M., Guo, F., Wang, Y. J., et al., 2004. Late Mesozoic Volcanism in the Northern Huaiyang Tectono-Magmatic Belt, Central China: Partial Melts from a Lithospheric Mantle with Subducted Continental Crust Relicts beneath the Dabie Orogen? Chemical Geology, 209(1/2): 27-48. doi: 10.1016/j.chemgeo.2004.04.020
    Ge, R. F., Zhu, W. B., Wu, H. L., et al., 2013. Zircon U-Pb Ages and Lu-Hf Isotopes of Paleoproterozoic Metasedimentary Rocks in the Korla Complex, NW China: Implications for Metamorphic Zircon Formation and Geological Evolution of the Tarim Craton. Precambrian Research, 231: 1-18. doi: 10.1016/j.precamres.2013.03.003
    Geringer, G. J., 1979. The Origin and Tectonic Setting of Amphibolites in Part of Namaqua Metamorphic Belt, South Africa, Traa'. Geological Society South Africa, 82: 287-303
    Goldberg, A. S., 2010. Dyke Swarms as Indicators of Major Extensional Events in the 1.9-1.2 Ga Columbia Supercontinent. Journal of Geodynamics, 50(3/4): 176-190. doi: 10.1016/j.jog.2010.01.017
    Gong, S. L., Chen, N. S., Wang, Q. Y., et al., 2012. Early Paleoproterozoic Magmatism in the Quanji Massif, Northeastern Margin of the Qinghai-Tibet Plateau and Its Tectonic Significance: LA-ICPMS U-Pb Zircon Geochronology and Geochemistry. Gondwana Research, 21(1): 152-166. doi: 10.1016/j.gr.2011.07.011
    Gong, S. L., Chen, N. S., Geng, H. Y., et al., 2014. Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 25(1): 74-86. doi: 10.1007/s12583-014-0401-2
    Gust, D., Arculus, R. J., Kersting, A. B., 1997. Aspects of Magma Sources and Processes in the Honshu Arc. The Canadian Mineralogist, 35: 347-365 http://www.researchgate.net/publication/285747096_Aspects_of_magma_sources_and_processes_in_the_Honshu_arc
    Harlan, S. S., Geissman, J. W., Snee, L. W., 2008. Paleomagnetism of Proterozoic Mafic Dikes from the Tobacco Root Mountains, Southwest Montana. Precambrian Research, 163(3/4): 239-264. doi: 10.1016/j.precamres.2007.12.002
    Hoffman, P. F., 1997. Tectonic Genealogy of North America. In: van der Pluijm, B. A., Marshak, S., eds., Earth Structure: An Introduction to Structural Geology and Tectonics. McGraw-Hill, New York. 459-464
    Hofmann, A. W., Jochum, K. P., 1996. Source Characteristics Derived from very Incompatible Trace Elements in Mauna Loa and Mauna Kea Basalts, Hawaii Scientific Drilling Project. Journal of Geophysical Research: Solid Earth, 101(B5): 11831-11839. doi: 10.1029/95jb03701
    Hou, G. T., 2012. Mechanism for Three Types of Mafic Dyke Swarms. Geoscience Frontiers, 3(2): 217-223. doi: 10.1016/j.gsf.2011.10.003
    Huang, W., Zhang, L., Ba, J., et al., 2011. Detrital Zircon LA-ICP-MS U-Pb Dating for K-feldspar Leptite of Quanji Massif in the North Margin of Qaidam Block: Constraint on the Age of Dakendaban Group. Geological Bulletin of China, 30: 1353-1359 (in Chinese with English Abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252284596.html
    Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600. doi: 10.1016/s0016-7037(96)00349-3
    Kusky, T. M., Li, J. H., Santosh, M., 2007. The Paleoproterozoic North Hebei Orogen: North China Craton's Collisional Suture with the Columbia Supercontinent. Gondwana Research, 12(1/2): 4-28. doi: 10.1016/j.gr.2006.11.012
    Kusky, T. M., Santosh, M., 2009. The Columbia Connection in North China. Geological Society, London, Special Publications, 323(1): 49-71. doi: 10.1144/sp323.3
    La Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3/4): 115-136. doi: 10.1016/s0009-2541(98)00002-3
    Li, X. H., Liu, D. Y., Sun, M., et al., 2004. Precise Sm-Nd and U-Pb Isotopic Dating of the Supergiant Shizhuyuan Polymetallic Deposit and Its Host Granite, SE China. Geological Magazine, 141(2): 225-231. doi: 10.1017/s0016756803008823
    Liao, F. X., Zhang, L., Wang Q. Y., et al., 2014. Geochronology and Geochemistry of the Dike-Swarm Garnet-Free Amphibolites in the Quanji Massif, NW China: Late Paleoproterozoic Back Arc Magmatism and Links to Amalgamation of the Tarim and North China Cratons and Assembly of the Columbia Supercontinent. Precambrian Research, 249: 33-56 http://www.sciencedirect.com/science/article/pii/S0301926814001442
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
    Lu, J. S., Wang, G. D., Wang, H., et al., 2013. Metamorphic P-T-t Paths Retrieved from the Amphibolites, Lushan Terrane, Henan Province and Reappraisal of the Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen. Precambrian Research, 238: 61-77. doi: 10.1016/j.precamres.2013.09.019
    Lu, S. N., 2002. Preliminary Study of Precambrian Geology in the Northern Tibet-Qinghai Plateau. Geological Publishing House, Beijing (in Chinese)
    Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1/2): 94-107. doi: 10.1016/j.precamres.2007.04.025
    Ma, X. X., Shu, L. S., Santosh, M., et al., 2013. Paleoproterozoic Collisional Orogeny in Central Tianshan: Assembling the Tarim Block within the Columbia Supercontinent. Precambrian Research, 228: 1-19. doi: 10.1016/j.precamres.2013.01.009
    Mayborn, K. R., Lesher, C. E., 2004. Paleoproterozoic Mafic Dike Swarms of Northeast Laurentia: Products of Plumes or Ambient Mantle? Earth and Planetary Science Letters, 225(3/4): 305-317. doi: 10.1016/j.epsl.2004.06.014
    Meert, J. G., 2002. Paleomagnetic Evidence for a Paleo-Mesoproterozoic Supercontinent Columbia. Gondwana Research, 5(1): 207-215. doi: 10.1016/s1342-937x(05)70904-7
    Meert, J. G., 2012. What's in a Name? The Columbia (Paleopangaea/Nuna) Supercontinent. Gondwana Research, 21(4): 987-993. doi: 10.1016/j.gr.2011.12.002
    Mohanty, S., 2012. Spatio-Temporal Evolution of the Satpura Mountain Belt of India: A Comparison with the Capricorn Orogen of Western Australia and Implication for Evolution of the Supercontinent Columbia. Geoscience Frontiers, 3(3): 241-267. doi: 10.1016/j.gsf.2011.10.005
    McCulloch, M. T., Gamble, J. A., 1991. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 102(3/4): 358-374. doi: 10.1016/0012-821x(91)90029-h
    Park, J. K., Buchan, K. L., Harlan, S. S., 1995. A Proposed Giant Radiating Dyke Swarm Fragmented by the Separation of Laurentia and Australia Based on Paleomagnetism of ca. 780 Ma Mafic Intrusions in Western North America. Earth and Planetary Science Letters, 132(1-4): 129-139. doi: 10.1016/0012-821x(95)00059-l
    Pearce, J. A., 1996. A User's Guide to Basalt Discrimination Diagrams. In: Wyman, D. A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration. Geological Association of Canada, Short Course Notes, 12: 79-113
    Pearce, J. A., 1982. Trace Element Characteristics of the Lava from Destructive Plate Boundaries in Andesites. John Wiley and Sons, Chichester. 525-547
    Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. doi: 10.1007/bf00375192
    Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. doi: 10.1016/0012-821x(73)90129-5
    Peng, P., Zhai, M. G., Guo, J. H., et al., 2007. Nature of Mantle Source Contributions and Crystal Differentiation in the Petrogenesis of the 1.78 Ga Mafic Dykes in the Central North China Craton. Gondwana Research, 12(1/2): 29-46. doi: 10.1016/j.gr.2006.10.022
    Piper, J. D. A., Zhang, J. S., Huang, B., et al., 2011. Palaeomagnetism of Precambrian Dyke Swarms in the North China Shield: The ~1.8 Ga LIP Event and Crustal Consolidation in Late Palaeoproterozoic Times. Journal of Asian Earth Sciences, 41(6): 504-524. doi: 10.1016/j.jseaes.2011.03.010
    Roberts, N. M. W., 2013. The Boring Billion? Lid Tectonics, Continental Growth and Environmental Change Associated with the Columbia Supercontinent. Geoscience Frontiers, 4(6): 681-691. doi: 10.1016/j.gsf.2013.05.004
    Rogers, J. J. W., 1996. A History of Continents in the Past Three Billion Years. The Journal of Geology, 104(1): 91-107. doi: 10.1086/629803
    Rogers, J. J. W., 2012. Did Natural Fission of 235U in the Earth Lead to Formation of the Supercontinent Columbia? Geoscience Frontiers, 3(4): 369-374. doi: 10.1016/j.gsf.2012.03.005
    Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia: A Mesoproterozoic Supercontinent. Gondwana Research, 5(1): 5-22. doi: 10.1016/s1342-937x(05)70883-2
    Rogers, J. J. W., Santosh, M., 2003. Supercontinents in Earth History. Gondwana Research, 6(3): 357-368. doi: 10.1016/s1342-937x(05)70993-x
    Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, New York. 352
    Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267-309. doi: 10.1029/95rg01302
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust. Elsevier-Pergamon, Oxford, 3: 1-64
    Santosh, M., 2010. Assembling North China Craton within the Columbia Supercontinent: The Role of Double-Sided Subduction. Precambrian Research, 178(1-4): 149-167. doi: 10.1016/j.precamres.2010.02.003
    Santosh, M., Liu, D. Y., Shi, Y. R., et al., 2013. Paleoproterozoic Accretionary Orogenesis in the North China Craton: A SHRIMP Zircon Study. Precambrian Research, 227: 29-54. doi: 10.1016/j.precamres.2011.11.004
    Santosh, M., Maruyama, S., Komiya, T., et al., 2010. Orogens in the Evolving Earth: From Surface Continents to 'Lost Continents' at the Core-Mantle Boundary. Geological Society, London, Special Publications, 338(1): 77-116. doi: 10.1144/sp338.5
    Santosh, M., Tsunogae, T., Li, J. H., et al., 2007a. Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 11(3): 263-285. doi: 10.1016/j.gr.2006.10.009
    Santosh, M., Wilde, S., Li, J., 2007b. Timing of Paleoproterozoic Ultrahigh-Temperature Metamorphism in the North China Craton: Evidence from SHRIMP U-Pb Zircon Geochronology. Precambrian Research, 159(3/4): 178-196. doi: 10.1016/j.precamres.2007.06.006
    Shinjo, R., Chung, S. L., Kato, Y., et al., 1999. Geochemical and Sr-Nd Isotopic Characteristics of Volcanic Rocks from the Okinawa Trough and Ryukyu Arc: Implications for the Evolution of a Young, Intracontinental Back Arc Basin. Journal of Geophysical Research: Solid Earth, 104(B5): 10591-10608. doi: 10.1029/1999jb900040
    Sklyarov, E., Gladkochub, D. P., Mazukabzov, A. M., et al., 2003. Neoproterozoic Mafic Dike Swarms of the Sharyzhalgai Metamorphic Massif, Southern Siberian Craton. Precambrian Research, 122(1-4): 359-376. doi: 10.1016/s0301-9268(02)00219-x
    Sobolev, A. V., Hofmann, A. W., Nikogosian, I. K., 2000. Recycled Oceanic Crust Observed in 'Ghost Plagioclase' within the Source of Mauna Loa Lavas. Nature, 404: 986-990 doi: 10.1038/35010098
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/gsl.sp.1989.042.01.19
    Tanaka, T., Togashi, S., Kamioka, H., et al., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with LaJolla Neodymium. Chemical Geology, 168(3/4): 279-281. doi: 10.1016/s0009-2541(00)00198-4
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford Press. 1-312
    Taylor, P. N., Jones, N. W., Moorbuth, S., 1984. Isotopic Assessment of Relative Contributions from Crust and Mantle Sources to Magma Genesis of Precambrian Granitoid Rocks. Phil. Trans. Research Society London, A310: 605-625 http://rsta.royalsocietypublishing.org/content/310/1514/605.abstract
    Thompson, R. N., Morrison, M. A., 1988. Asthenospheric and Lower-Lithospheric Mantle Contributions to Continental Extensional Magmatism: An Example from the British Tertiary Province. Chemical Geology, 68(1/2): 1-15. doi: 10.1016/0009-2541(88)90082-4
    Trap, P., Faure, M., Lin, W., et al., 2012. Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen: Toward a Comprehensive Model. Precambrian Research, 222/223: 191-211. doi: 10.1016/j.precamres.2011.09.008
    Walker, K. R., Joplin, G. A., Lovering, J. F., et al., 1959. Metamorphic and Metasomatic Convergence of Basic Igneous Rocks and Lime-Magnesia Sediments of the Precambrian of North-Western Queensland. Journal of the Geological Society of Australia, 6(2): 149-177. doi: 10.1080/00167615908728504
    Wan, Y. S., Zhang, J. X., Yang, J. S., et al., 2006. Geochemistry of High-Grade Metamorphic Rocks of the North Qaidam Mountains and Their Geological Significance. Journal of Asian Earth Sciences, 28(2/3): 174-184. doi: 10.1016/j.jseaes.2005.09.018
    Wang, Q. Y., 2009. Components, Petrogenesis and Polymetamorphism of the Supracrustal Sequences of the Quanji Block Basement in Delingha Region, NW China, and Tectonic Evolution: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)
    Wang, Q. Y., Chen, N. S., Li, X. Y., et al., 2008. LA-ICPMS Zircon U-Pb Geochronological Constraints on the Tectonothermal Evolution of the Early Paleoproterozoic Dakendaban Group in the Quanji Block, NW China. Science Bulletin, 53(18): 2849-2858. doi: 10.1007/s11434-008-0265-x
    Wang, Y. J., Zhao, G. C., Fan, W. M., et al., 2007. LA-ICP-MS U-Pb Zircon Geochronology and Geochemistry of Paleoproterozoic Mafic Dykes from Western Shandong Province: Implications for Back-Arc Basin Magmatism in the Eastern Block, North China Craton. Precambrian Research, 154(1/2): 107-124. doi: 10.1016/j.precamres.2006.12.010
    Wang, Y. J., Zhao, G. C., Cawood, P. A., et al., 2008. Geochemistry of Paleoproterozoic (~1 770 Ma) Mafic Dikes from the Trans-North China Orogen and Tectonic Implications. Journal of Asian Earth Sciences, 33(1/2): 61-77. doi: 10.1016/j.jseaes.2007.10.018
    Wilde, S. A., Zhao, G. C., 2005. Archean to Paleoproterozoic Evolution of the North China Craton. Journal of Asian Earth Sciences, 24(5): 519-522. doi: 10.1016/j.jseaes.2004.06.004
    Wilde, S. A., Zhao, G. C., Sun, M., 2002. Development of the North China Craton during the Late Archaean and Its Final Amalgamation at 1.8 Ga: Some Speculations on Its Position within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 5(1): 85-94. doi: 10.1016/s1342-937x(05)70892-3
    Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectono-Magmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30. doi: 10.1016/0012-821x(80)90116-8
    Wu, F. Y., Zhao, G. C., Wilde, S. A., et al., 2005. Nd Isotopic Constraints on Crustal Formation in the North China Craton. Journal of Asian Earth Sciences, 24(5): 523-545. doi: 10.1016/j.jseaes.2003.10.011
    Xia, X. P., Sun, M., Zhao, G. C., et al., 2006. LA-ICP-MS U-Pb Geochronology of Detrital Zircons from the Jining Complex, North China Craton and Its Tectonic Significance. Precambrian Research, 144(3/4): 199-212. doi: 10.1016/j.precamres.2005.11.004
    Xiao, Q. H., 2004. Age of Yingfeng Rapakivi Granite Pluton on the North Flank of Qaidam and Its Geological Significance. Science in China Series D: Earth Sciences, 47(4): 357-365. doi: 10.1360/02yd0472
    Xu, Z. Q., Yang, J. S., Wu, C. L., et al., 2006. Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 28(2/3): 160-173. doi: 10.1016/j.jseaes.2005.09.016
    Yang, J. H., Sun, J. F., Chen, F., et al., 2007. Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula: Implications for Post-Collisional Lithosphere Thinning of the Eastern North China Craton. Journal of Petrology, 48(10): 1973-1997. doi: 10.1093/petrology/egm046
    Yin, C. Q., Zhao, G. C., Sun, M., et al., 2009. LA-ICP-MS U-Pb Zircon Ages of the Qianlishan Complex: Constrains on the Evolution of the Khondalite Belt in the Western Block of the North China Craton. Precambrian Research, 174(1/2): 78-94. doi: 10.1016/j.precamres.2009.06.008
    Zhai, M. G., Santosh, M., 2013. Metallogeny of the North China Craton: Link with Secular Changes in the Evolving Earth. Gondwana Research, 24(1): 275-297. doi: 10.1016/j.gr.2013.02.007
    Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. doi: 10.1016/j.gr.2011.02.005
    Zhang, C. L., Li, Z. X., Li, X. H., et al., 2009. Neoproterozoic Mafic Dyke Swarms at the Northern Margin of the Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 35(2): 167-179. doi: 10.1016/j.jseaes.2009.02.003
    Zhang, J. X., Wan, Y. S., Xu, Z. Q., et al., 2001. Discovery of Basic Granulite and Its Formation Age in Delingha Area, North Qaidam Mountains. Acta Petrologica Sinica, 17: 453-458 (in Chinese with English Abstract) http://www.researchgate.net/publication/279543442_Discovery_of_a_basic_granulite_and_its_formation_age_in_Delingha_area_North_Qaidam_monutains
    Zhang, L., Liao, F. X., Ba, J., et al., 2011. Mineral Evolution and Zircon Geochronology of Mafic Enclave in Granitic Gneiss of the Quanji Block and Implications for Paleoproterozoic Regional Metamorphism. Earth Science Frontiers, 18: 79-84 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201102010.htm
    Zhang, L., Wang, Q. Y., Chen, N. S., et al., 2014. Geochemistry and Detrital Zircon U-Pb and Hf Isotopes of the Paragneiss Suite from the Quanji Massif, SE Tarim Craton: Implications for Paleoproterozoic Tectonics in NW China. Journal of Asian Earth Sciences, 95: 33-50. doi: 10.1016/j.jseaes.2014.05.014
    Zhao, G. C., 2001. Palaeoproterozoic Assembly of the North China Craton. Geological Magazine, 138(1): 87-91. doi: 10.1017/s0016756801005040
    Zhao, G. C., Kroner, A., 2007. Geochemistry of Neoarchean (ca. 2.55-2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth: Discussion. Geological Society of America Bulletin, 119(3/4): 487-489. doi: 10.1130/b26022.1
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 1998. Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Review, 40(8): 706-721. doi: 10.1080/00206819809465233
    Zhao, G. C., Cawood, P. A., Lu, L. Z., 1999. Petrology and P-T History of the Wutai Amphibolites: Implications for Tectonic Evolution of the Wutai Complex, China. Precambrian Research, 93(2/3): 181-199. doi: 10.1016/s0301-9268(98)00090-4
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1/2): 55-88. doi: 10.1016/s0301-9268(00)00076-0
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1/2): 45-73. doi: 10.1016/s0301-9268(00)00154-6
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002a. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1-4): 125-162. doi: 10.1016/s0012-8252(02)00073-9
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2002b. SHRIMP U-Pb Zircon Ages of the Fuping Complex: Implications for Late Archean to Paleoproterozoic Accretion and Assembly of the North China Craton. American Journal of Science, 302(3): 191-226. doi: 10.2475/ajs.302.3.191
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002c. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1-4): 125-162. doi: 10.1016/s0012-8252(02)00073-9
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. doi: 10.1016/j.precamres.2004.10.002
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 67(1/2): 91-123. doi: 10.1016/j.earscirev.2004.02.003
    Zhao, G. C., Wilde, S. A., Guo, J. H., et al., 2010. Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton. Precambrian Research, 177(3/4): 266-276. doi: 10.1016/j.precamres.2009.12.007
    Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222/223: 13-54. doi: 10.1016/j.precamres.2012.09.017
    Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. doi: 10.1016/j.gr.2012.08.016
    Zhao, G. C., 2014. Precambrian Evolution of the North China Craton. Elsevier, Amsterdam. 194
    Zhao, J. H., Hu, R. Z., Zhou, M. F., et al., 2007. Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937-952. doi: 10.1017/s0016756807003834
    Zhao, J. H., Zhou, M. F., Zheng, J. P., 2010. Metasomatic Mantle Source and Crustal Contamination for the Formation of the Neoproterozoic Mafic Dike Swarm in the Northern Yangtze Block, South China. Lithos, 115(1-4): 177-189. doi: 10.1016/j.lithos.2009.12.001
    Zhao, J. H., Zhou, M. F., 2009. Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China. Lithos, 107(3/4): 152-168. doi: 10.1016/j.lithos.2008.09.017
    Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189-1206. doi: 10.1016/j.gr.2012.10.001
    Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. doi: 10.1146/annurev.ea.14.050186.002425
    Zou, H. B., Zindler, A., Xu, X. S., et al., 2000. Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 171(1/2): 33-47. doi: 10.1016/s0009-2541(00)00243-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(778) PDF downloads(143) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return