Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 6
Nov 2016
Turn off MathJax
Article Contents
Chong Xu, Xiwei Xu, Yingying Tian, Lingling Shen, Qi Yao, Xueqiang Huang, Junxue Ma, Xi Chen, Siyuan Ma. Two comparable earthquakes produced greatly different coseismic landslides: The 2015 Gorkha, Nepal and 2008 Wenchuan, China events. Journal of Earth Science, 2016, 27(6): 1008-1015. doi: 10.1007/s12583-016-0684-6
Citation: Chong Xu, Xiwei Xu, Yingying Tian, Lingling Shen, Qi Yao, Xueqiang Huang, Junxue Ma, Xi Chen, Siyuan Ma. Two comparable earthquakes produced greatly different coseismic landslides: The 2015 Gorkha, Nepal and 2008 Wenchuan, China events. Journal of Earth Science, 2016, 27(6): 1008-1015. doi: 10.1007/s12583-016-0684-6

Two comparable earthquakes produced greatly different coseismic landslides: The 2015 Gorkha, Nepal and 2008 Wenchuan, China events

doi: 10.1007/s12583-016-0684-6
More Information
  • The 2015 Gorkha Earthquake in Nepal and the 2008 Wenchuan Earthquake in China occurred at the south and southeast margins of the Tibetan Plateau, respectively. Both earthquakes had similar magnitudes of Mw 7.8 and 7.9, caused catastrophic loss of life and damage to property, and generated tens of thousands of landslides. Comparisons of pre- and post-quake satellite images supported by field investigations show that the Gorkha Earthquake triggered at least 2 064 large landslides (defined as covering an area ≥10 000 m2) over a ~35 600 km2 region with a volume of (444–584)×106 (average 509×106) m3 and total area of 44.78×106 m2. In contrast, the Wenchuan Earthquake triggered 25 580 large landslides over a region of ~44 000 km2 with a volume of (7 128–9 479)×106 (average 8 219×106) m3 and a total area of about 670.65×106 m2. Several controlling factors including topographic relief, slope steepness, and regional peak ground acceleration (PGA) were investigated to try to explain the great differences between the number, volume and area of the coseismic landslides associated with the two similar earthquakes. We found that the differences primarily arose from an unexpected factor, the dip angle of the seismogenic fault. This discovery should aid understanding the failure mechanisms of quake-triggered landslides, and suggests that more factors should be taken into consideration in estimating coseismic landslide volumes from earthquake magnitudes.

     

  • loading
  • Angster, S., Fielding, E. J., Wesnousky, S., et al., 2015. Field Reconnaissance after the 25 April 2015 M 7.8 Gorkha Earthquake. Seismological Research Letters, 86(6): 1506–1513. doi: 10.1785/0220150135
    Bhakuni, S., Luirei, K., Kothyari, G. C., 2013. Neotectonic Fault in the Middle Part of Lesser Himalaya, Arunachal Pradesh: A Study Based on Structural and Morphotectonic Analyses. Himalayan Geology, 34(1): 57–64
    British Geological Survey, Durham Universit., 2015. Nepal Earthquake Response 2015. [2016-10-01]. http://www.bgs.ac.uk/research/earthHazards/epom/nepalEarthquakeResponse.html
    Chiaro, G., Kiyota, T., Pokhrel, R. M., et al., 2015. Reconnaissance Report on Geotechnical and Structural Damage Caused by the 2015 Gorkha Earthquake, Nepal. Soils and Foundations, 55(5): 1030–1043. doi: 10.1016/j.sandf.2015.09.006
    Collins, B. D., Jibson, R. W., 2015. Assessment of Existing and Potential Landslide Hazards Resulting from the April 25, 2015 Gorkha, Nepal Earthquake Sequence. US Geological Survey. doi: 10.3133/ofr20151142
    Galetzka, J., Melgar, D., Genrich, J. F., et al., 2015. Slip Pulse and Resonance of the Kathmandu Basin during the 2015 Gorkha Earthquake, Nepal. Science, 349(6252): 1091–1095. doi: 10.1126/science.aac6383
    Gorum, T., Fan, X. M., van Westen, C. J., et al., 2011. Distribution Pattern of Earthquake-Induced Landslides Triggered by the 12 May 2008 Wenchuan Earthquake. Geomorphology, 133(3–4): 152–167. doi: 10.1016/j.geomorph.2010.12.030
    Harp, E. L., Jibson, R. W., 1995. Inventory of Landslides Triggered by the 1994 Northridge, California Earthquake. [2016-10-01]. http://geo-nsdi.er.usgs.gov/metadata/openfile/95-213/
    Hashash, Y. M. A., Tiwari, B., Moss, R. E. S., et al., 2015. Geotechnical Field Reconnaissance: Gorkha (Nepal) Earthquake of April 25, 2015 and Related Shaking Sequence. Geotechnical Extreme Event Reconnaisance GEER Association Report No. GEER-040: 250
    Hauksson, E., Jones, L. M., Hutton, K., 1995. The 1994 Northridge Earthquake Sequence in California: Seismological and Tectonic Aspects. Journal of Geophysical Research: Solid Earth (1978–2012), 100(B7): 12335–12355. doi: 10.1029/95JB00865
    Hayes, G. P., Briggs, R. W., Sladen, A., et al., 2010. Complex Rupture during the 12 January 2010 Haiti Earthquake. Nature Geoscience, 3(11): 800–805. doi: 10.1038/ngeo977
    Kargel, J. S., Leonard, G. J., Shugar, D. H., et al., 2016. Geomorphic and Geologic Controls of Geohazards Induced by Nepal's 2015 Gorkha Earthquake. Science, 351(6269): 140. doi: 10.1126/science.aac8353
    Keefer, D. K., 1994. The Importance of Earthquake-Induced Landslides to Long-Term Slope Erosion and Slope-Failure Hazards in Seismically Active Regions. Geomorphology, 10(1–4): 265–284. doi: 10.1016/0169-555X(94)90021-3
    Kobayashi, T., Morishita, Y., Yarai, H., 2015. Detailed Crustal Deformation and Fault Rupture of the 2015 Gorkha Earthquake, Nepal, Revealed from ScanSAR-Based Interferograms of ALOS-2. Earth, Planets and Space, 67(1): 1–13. doi: 10.1186/s40623-015-0359-z
    Larsen, I. J., Montgomery, D. R., Korup, O., 2010. Landslide Erosion Controlled by Hillslope Material. Nature Geoscience, 3(4): 247–251. doi: 10.1038/ngeo776
    Le Fort, P., 1975. Himalayas: the Collided Range. Present Knowledge of the Continental Arc. American Journal of Science, 275-A: 1–44
    Lindsey, E. O., Natsuaki, R., Xu, X., et al., 2015. Line-of-Sight Displacement from ALOS-2 Interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 Aftershock. Geophysical Research Letters, 42(16): 6655–6661. doi: 10.1002/2015GL065385
    Moss, R. E. S., Thompson, E. M., Kieffer, D. S., et al., 2015. Geotechnical Effects of the 2015 Magnitude 7.8 Gorkha, Nepal, Earthquake and Aftershocks. Seismological Research Letters, 86(6): 1514–1523. doi: 10.1785/0220150158
    Mukherjee, S., 2015. A Review on Out-of-Sequence Deformation in the Himalaya. Geological Society, London, Special Publications, 412: 412. doi: 10.1144/SP412.13
    Najman, Y., Appel, E., Boudagher-Fadel, M., et al., 2010. Timing of India-Asia Collision: Geological, Biostratigraphic, and Palaeomagnetic Constraints. Journal of Geophysical Research: Solid Earth (1978–2012), 115(B12). doi: 10.1029/2010JB007673
    Parameswaran, R. M., Natarajan, T., Rajendran, K., et al., 2015. Seismotectonics of the April–May 2015 Nepal Earthquakes: An Assessment Based on the Aftershock Patterns, Surface Effects and Deformational Characteristics. Journal of Asian Earth Sciences, 111: 161–174. doi: 10.1016/j.jseaes.2015.07.030
    Parker, R. N., Densmore, A. L., Rosser, N. J., et al., 2011. Mass Wasting Triggered by the 2008 Wenchuan Earthquake is Greater than Orogenic Growth. Nature Geoscience, 4(7): 449–452. doi: 10.1038/ngeo1154
    Searle, M. P., Law, R. D., Godin, L., et al., 2008. Defining the Himalayan Main Central Thrust in Nepal. Journal of the Geological Society, 165(2): 523–534. doi: 10.1144/0016-76492007-081
    Sun, B., Yan, P., 2015. Damage Characteristics and Seismic Capacity of Buildings During Nepal Ms 8.1 Earthquake. Earthquake Engineering and Engineering Vibration, 14(3): 571–578. doi: 10.1007/s11803-015-0046-x
    Upreti, B., 1999. An Overview of the Stratigraphy and Tectonics of the Nepal Himalaya. Journal of Asian Earth Sciences, 17(5): 577–606. doi: 10.1016/S1367-9120(99)00047-4
    US Geological Surve., 2008. Shakemap US2008ryan. [2016-10-01]. http://earthquake.usgs.gov/earthquakes/shakemap/global/shake/2008ryan/
    US Geological Surve., 2015. Shakemap US20002926. [2016-10-01]. http://earthquake.usgs.gov/earthquakes/shakemap/global/shake/20002926/
    Wang, W. N., Wu, H. L., Nakamura, H., et al., 2003. Mass Movements Caused by Recent Tectonic Activity: The 1999 Chi-Chi Earthquake in Central Taiwan. The Island Arc, 12(4): 325–334. doi: 10.1046/j.1440-1738.2003.00400.x
    Wesnousky, S. G., Kumar, S., Mohindra, R., et al., 1999. Uplift and Convergence along the Himalayan Frontal Thrust of India. Tectonics, 18(6): 967–976. doi: 10.1029/1999TC900026
    Xu, C., 2014. Do Buried-Rupture Earthquakes Trigger Less Landslides than Surface-Rupture Earthquakes for Reverse Faults? Geomorphology, 216: 53–57. doi: 10.1016/j.geomorph.2014.03.029
    Xu, C., 2015. Preparation of Earthquake-Triggered Landslide Inventory Maps Using Remote Sensing and GIS Technologies: Principles and Case Studies. Geoscience Frontiers, 6(6): 825–836. doi: 10.1016/j.gsf.2014.03.004
    Xu, X., Wen, X., Yu, G., et al., 2009. Coseismic Reverse-and Oblique-Slip Surface Faulting Generated by the 2008 Mw 7.9 Wenchuan Earthquake, China. Geology, 37(6): 515–518. doi: 10.1130/G25462A.1
    Xu, C., Xu, X., Yao, Q., et al., 2013. GIS-Based Bivariate Statistical Modelling for Earthquake-Triggered Landslides Susceptibility Mapping Related to the 2008 Wenchuan Earthquake, China. Quarterly Journal of Engineering Geology and Hydrogeology, 46(2): 221–236. doi: 10.1144/qjegh2012-006
    Xu, X., Wen, X., Han, Z., et al., 2013. Lushan Ms 7.0 Earthquake: A Blind Reserve-Fault Event. Chinese Science Bulletin, 58(28–29): 3437–3443. doi: 10.1007/s11434-013-5999-4
    Xu, C., Xu, X., Yao, X., et al., 2014a. Three (Nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides, 11(3): 441–461. doi: 10.1007/s10346-013-0404-6
    Xu, C., Xu, X., Gorum, T., et al., 2014b. Did the 2008 Wenchuan Earthquake Lead to a Net Volume Loss? Landslide Science for a Safer Geoenvironment, Proceedings of World Landslide Forum 3, 2–6 June 2014, Beijing. 3: 191–196. doi: 10.1007/978-3-319-04996-0_30
    Xu, C., Shyu, J. B. H., Xu, X., 2014c. Landslides Triggered by the 12 January 2010 Port-au-Prince, Haiti, Mw=7.0 Earthquake: Visual Interpretation, Inventory Compiling, and Spatial Distribution Statistical Analysis. Natural Hazards and Earth System Sciences, 14(7): 1789–1818. doi: 10.5194/nhess-14-1789-2014
    Xu, C., Xu, X., Shyu, J. B. H., 2015. Database and Spatial Distribution of Landslides Triggered by the Lushan, China Mw 6.6 Earthquake of 20 April 2013. Geomorphology, 248: 77–92. doi: 10.1016/j.geomorph.2015.07.002
    Xu, C., Xu, X., Shen, L., et al., 2016. Optimized Volume Models of Earthquake-Triggered Landslides. Scientific Reports, 6: 29797. doi: 10.1038/srep29797
    Yin, Y., Wang, F., Sun, P., 2009. Landslide Hazards Triggered by the 2008 Wenchuan Earthquake, Sichuan, China. Landslides, 6(2): 139–152. doi: 10.1007/s10346-009-0148-5
    Yin, Y., Li, B., Wang, W., 2015. Dynamic Analysis of the Stabilized Wangjiayan Landslide in the Wenchuan Ms 8.0 Earthquake and Aftershocks. Landslides, 12(3): 537–547. doi: 10.1007/s10346-014-0497-6
    Zhang, Z. W., Zhou, L. Q., Cheng, W. Z., et al., 2015. Focal Mechanism Solutions of Lushan Mw 6.6 Earthquake Sequence and Stress Field for Aftershock Zone. Earth Science––Journal of China University of Geosciences, 40(10): 1781–1793
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(703) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return