Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 4
Jul 2016
Turn off MathJax
Article Contents
Tao Chen, Zhenmin Jin, Andy H. Shen, Wei Li. Altered spinel as a petrotectonic indicator in abyssal peridotite from the easternmost part of Southwest Indian Ridge. Journal of Earth Science, 2016, 27(4): 611-622. doi: 10.1007/s12583-016-0707-3
Citation: Tao Chen, Zhenmin Jin, Andy H. Shen, Wei Li. Altered spinel as a petrotectonic indicator in abyssal peridotite from the easternmost part of Southwest Indian Ridge. Journal of Earth Science, 2016, 27(4): 611-622. doi: 10.1007/s12583-016-0707-3

Altered spinel as a petrotectonic indicator in abyssal peridotite from the easternmost part of Southwest Indian Ridge

doi: 10.1007/s12583-016-0707-3
More Information
  • Corresponding author: Tao Chen, summerjewelry@163.com
  • Received Date: 16 Jan 2015
  • Accepted Date: 16 Dec 2015
  • Publish Date: 12 Jul 2016
  • The easternmost part of Southwest Indian Ridge (SWIR) has special crustal structure, magmatic and tectonic processes. Abyssal peridotite from the easternmost part of Southwest Indian Ridge (63.5ºE/28ºS) is serpentinized spinel lherzolite. The accessory spinel has zoned texture, which was studied by petrography, electron probe micro-analysis (EPMA), and backscattered electron (BSE) imaging to reconstruct the petrotectonic and hydrothermal metamorphic history of the host abyssal peridotite. The fresh core is magmatic Al-spinel with low Cr#. The average extent of melting of the abyssal peridotite is about 5.9%. The composition of fresh magmatic spinel core indicates the studied area to be an anomalously thin crust with a melt-poor system. Hydrothermal reaction modifies the chemical composition of magmatic spinel. Ferritchromit is the first product forming the inner rim during pre-serpentinization. The abyssal ferritchromit crystalized as micro- to nano-sized particle with no triple grain boundary, indicating they crystalized in a rapid cooling process during hydrothermal alteration. Chemical compositions of ferritchromit indicate a hydrothermal metamorphism in amphibolite facies. Magnetite in the outer rim was formed by replacement of ferritchromit during syn- or post-serpentinization. Authigenic chlorites crystallized in two events: (1) after formation of ferritchromit crystallized as vein in fracture-zone near the core of spinel and (2) after formation of magnetite crystallized at outermost rim. They are different in compositions, indicating their formation temperature was about 289 ºC and declined to 214 ºC. These results show that the abyssal peridotite had undergone amphibolite to lower-greenschist facies hydrothermal events during pre- to syn-serpentinization or post-serpentinization.

     

  • loading
  • Arai, S., Okamura, H., Kadoshima, K., et al., 2011. Chemical Characteristics of Chromian Spinel in Plutonic Rocks: Implications for Deep Magma Processes and Discrimination of Tectonic Setting. Island Arc, 20(1): 125-137. doi: 10.1111/j.1440-1738.2010.00747.x
    Aswad, K. J. A., Aziz, N. R. H., Koyi, H. A., 2011. Cr-Spinel Compositions in Serpentinites and Their Implications for the Petrotectonic History of the Zagros Suture Zone, Kurdistan Region, Iraq. Geological Magazine, 148: 802-818 doi: 10.1017/S0016756811000422
    Bach, W., Banerjee, N. R., Dick, H. J. B., et al., 2002. Discovery of Ancient and Active Hydrothermal Systems along the Ultra-Slow Spreading Southwest Indian Ridge 10°-16° E. Geochemistry, Geophysics, Geosystems, 3(7): 1-14. doi: 10.1029/2001gc000279
    Bassias, Y., Triboulet, C., 1992. Petrology and P-T-t Evolution of the South West Indian Ridge Periodotites. A Case Study: East of the Merlville Fracture Zone at 62° E. Lithos, 28(1): 1-19. doi: 10.1016/0024-4937(92)90020-y
    Cannat, M., Rommevaux-Jestin, C., Sauter, D., et al., 1999. Formation of the Axial Relief at the very Slow Spreading Southwest Indian Ridge (49° to 69° E). Journal of Geophysical Research: Solid Earth, 104(B10): 22825-22843. doi: 10.1029/1999jb900195
    Cannat, M., Sauter, D., Bezos, A., et al., 2008. Spreading Rate, Spreading Obliquity, and Melt Supply at the Ultraslow Spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 9(4): Q04002. doi: 10.1029/2007gc001676
    Caritat, P. D., Hutcheon, I., Walshe, J. L., 1993. Chlorite Geothermometry: A Review. Clay and Clay Minerals, 41: 219-239 doi: 10.1346/CCMN.1993.0410210
    Cathelineau, M., Izquierdo, G., 1988. Temperature—Composition Relationships of Authigenic Micaceous Minerals in the Los Azufres Geothermal System. Contributions to Mineralogy and Petrology, 100(4): 418-428. doi: 10.1007/bf00371372
    De Freitas Suita, M. T. D. F., Strieder, A. J., 1996. Cr-Spinels from Brazilian Mafic-Ultramafic Complexes: Metamorphic Modifications. International Geology Review, 38(3): 245-267. doi: 10.1080/00206819709465333
    Dick, H. J. B., Lin, J., Schouten, H., 2003. An Ultraslow- Spreading Class of Ocean Ridge. Nature, 426(6965): 405-412. doi: 10.1038/nature02128
    Dick, H. J. B., 1989. Abyssal Peridotites, very Slow Spreading Ridhes and Ocean Ridge Magmatism. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins. Geological Society Special Publication, London, 42: 71-105
    Dick, H. J. B., Bullen, T., 1984. Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76. doi: 10.1007/bf00373711
    Droop, G. T. R., 1987. A General Equation for Estimating Fe3+ Concentrations in Ferromagnesian Silicates and Oxides from Microprobe Analyses, Using Stoichiometric Criteria. Mineralogical Magazine, 51(361): 431-435. doi: 10.1180/minmag.1987.051.361.10
    German, C. R., 2003. Hydrothermal Activity on the Eastern SWIR (50°-70° E): Evidence from Core-Top Geochemistry, 1887 and 1998. Geochemistry, Geophysics, Geosystems, 4(7): 9102. doi: 10.1029/2003gc000522
    German, C. R., Baker, E. T., Mevel, C., et al., 1998. Hydrothermal Activity along the Southwest Indian Ridge. Nature, 395: 490-493 doi: 10.1038/26730
    Hamdy, M. M., Lebda, E. -M. M., 2011. Al-Compositional Variation in Ophiolitic Chromitites from the South Eastern Desert of Egypt. Journal of Mining and Geology, 3: 232-250 http://www.researchgate.net/publication/235225111_Al-compositional_variation_in_ophiolitic_chromitites_from_the_south_Eastern_Desert_of_Egypt_Petrogenetic_implications
    Hellebrand, E., Snow, E., Dick, H. J. B., et al., 2001. Coupled Major and Trace Elements as Indicators of the Extent of Melting in Mid-Ocean-Ridge Peridotites. Nature, 410: 677-681 doi: 10.1038/35070546
    Hellebrand, E., Snow, J. E., Mühe, R., 2002. Mantle Melting beneath Gakkel Ridge (Arctic Ocean): Abyssal Peridotite Spinel Compositions. Chemical Geology, 182(2-4): 227-235. doi: 10.1016/s0009-2541(01)00291-1
    Khalil, K. I., 2007. Chromite Mineralization in Ultramafic Rocks of the Wadi Ghadir Area, Eastern Desert, Egypt: Mineralogical, Microchemical and Genetic Studies. Neues Jahrbuch für Mineralogie, 183: 283-296 doi: 10.1127/0077-7757/2007/0074
    Khalil, K. I., El-Makky, A. M., 2009. Alteration Mechanisms of Chromian-Spinel during Serpentinization at Wadi Sifein Area, Eastern Desert, Egypt. Resource Geology, 59(2): 194-211. doi: 10.1111/j.1751-3928.2009.00090.x
    Kimball, K. L., 1990. Effects of Hydrothermal Alteration on the Compositions of Chromian Spinels. Contributions to Mineralogy and Petrology, 105(3): 337-346. doi: 10.1007/bf00306543
    Lee, Y. I., 1999. Geotectonic Significance of Detrital Chromian Spinel: A Review. Geosciences Journal, 3(1): 23-29. doi: 10.1007/bf02910231
    Mellini, M., Rumori, C., Viti, C., 2005. Hydrothermally Reset Magmatic Spinels in Retrograde Serpentinites: Formation of "Ferritchromit" Rims and Chlorite Aureoles. Contributions to Mineralogy and Petrology, 149(3): 266-275. doi: 10.1007/s00410-005-0654-y
    Mendel, V., Sauter, D., Parson, L., et al., 1997. Segmentation and Morphotectonic Variations along a Super Slow- Spreading Center: The Southwest Indian Ridge (57 degrees E-70 degrees E). Marine Geophysical Research, 19: 505-533 doi: 10.1023/A:1004232506333
    Meyzen, C. M., Toplis, M. J., Humler, E., et al., 2003. A Discontinuity in Mantle Composition beneath the Southwest Indian Ridge. Nature, 421(6924): 731-733. doi: 10.1038/nature01424
    Minshull, T. A., White, R. S., 1996. Thin Crust on the Flanks of the Slow-Spreading Southwest Indian Ridge. Geophysical Journal International, 125(1): 139-148. doi: 10.1111/j.1365-246x.1996.tb06541.x
    Morishita, T., Maeda, J., Miyashita, S., et al., 2007. Petrology of Local Concentration of Chromian Spinel in Dunite from the Slow-Spreading Southwest Indian Ridge. European Journal of Mineralogy, 19(6): 871-882. doi: 10.1127/0935-1221/2007/0019-1773
    Münch, U., Lalou, C., Halbach, P., et al., 2001. Relict Hydrothermal Events along the Super-Slow Southwest Indian Spreading Ridge near 63° 56′E—Mineralogy, Chemistry and Chronology of Sulfide Samples. Chemical Geology, 177(3-4): 341-349. doi: 10.1016/s0009-2541(00)00418-6
    Nakamura, K., Kato, Y., Tamaki, K., et al., 2007. Geochemistry of Hydrothermally Altered Basaltic Rocks from the Southwest Indian Ridge near the Rodriguez Triple Junction. Marine Geology, 239(3-4): 125-141. doi: 10.1016/j.margeo.2007.01.003
    Niu, Y. L., Hékinian, R., 1997. Spreading-Rate Dependence of the Extent of Mantle Melting beneath Ocean Ridges. Nature, 385(6614): 326-329. doi: 10.1038/385326a0
    Sack, R. O., Ghiorso, M. S., 1991. Chromian Spinel as Petrogenetic Indicators: Thermodynamics and Petrological Applications. American Mineralogist, 76: 827-847 http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsammin&resid=76/5-6/827
    Sansone, M. T. C., Prosser, G., Rizzo, G., et al., 2012. Spinel-Peridotites of the Frido Unit Ophiolites (Southern Apennine-Italy): Evidence for Oceanic Evolution. Periodico di Mineralogia, 81: 35-59
    Sauter, D., Cannat, M., 2010. The Ultraslow Spreading Southwest Indian Ridge. Geophysical Monograph Series, 188: 153-173 doi: 10.1029/2008GM000843/pdf
    Searle, R. C., Bralee, A. V., 2007. Asymmetric Generation of Oceanic Crust at the Ultra-Slow Spreading Southwest Indian Ridge, 64° E. Geochemistry, Geophysics, Geosystems, 8(5): Q05015. doi: 10.1029/2006gc001529
    Searle, R. C., Cannat, M., Fujioka, K., et al., 2003. FUJI Dome: A Large Detachment Fault near 64° E on the very Slow-Spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 4(8): 9105. doi: 10.1029/2003gc000519
    Seyler, M., Cannat, M., Mével, C., 2003. Evidence for Major- Element Heterogeneity in the Mantle Source of Abyssal Peridotites from the Southwest Indian Ridge (52° to 68° E). Geochemistry, Geophysics, Geosystems, 4(2): 9101. doi: 10.1029/2002gc000305
    Tao, C. H., Lin, J., Guo, S. Q., et al., 2011. First Active Hydrothermal Vents on an Ultraslow-Spreading Center: Southwest Indian Ridge. Geology, 40(1): 47-50. doi: 10.1130/g32389.1
    Voigt, M., von der Handt, A. V. D., 2011. Influence of Subsolidus Processes on the Chromium Number in Spinel in Ultramafic Rocks. Contributions to Mineralogy and Petrology, 162(4): 675-689. doi: 10.1007/s00410-011-0618-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(4127) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return