Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 4
Jul 2016
Turn off MathJax
Article Contents
Mei Yu, Yanxin Wang, Shuqiong Kong, Evalde Mulindankaka, Yuan Fang, Ya Wu. Adsorption Kinetic Properties of As(Ⅲ) on Synthetic Nano Fe-Mn Binary Oxides. Journal of Earth Science, 2016, 27(4): 699-706. doi: 10.1007/s12583-016-0714-4
Citation: Mei Yu, Yanxin Wang, Shuqiong Kong, Evalde Mulindankaka, Yuan Fang, Ya Wu. Adsorption Kinetic Properties of As(Ⅲ) on Synthetic Nano Fe-Mn Binary Oxides. Journal of Earth Science, 2016, 27(4): 699-706. doi: 10.1007/s12583-016-0714-4

Adsorption Kinetic Properties of As(Ⅲ) on Synthetic Nano Fe-Mn Binary Oxides

doi: 10.1007/s12583-016-0714-4
More Information
  • Corresponding author: Yanxin Wang, yx.wang@cug.edu.cn
  • Received Date: 04 Jun 2015
  • Accepted Date: 05 Dec 2015
  • Publish Date: 12 Jul 2016
  • The adsorptive removal of arsenic by synthetically-prepared nano Fe-Mn binary oxides (FM) was investigated. A novel method using potassium permanganate and ferric chloride as raw materials was used to synthesise FM. The molar ratio of Fe and Mn in the synthetic Fe-Mn binary oxides was 4 : 3. The FM-1 and FM-2 (prepared at different activation temperatures) having high specific surface areas (358.87 and 128.58 m2/g, respectively) were amorphous and of nano particle types. The amount of arsenic adsorbed on FM-1 was higher than that adsorbed on FM-2 particles. After adsorption by FM-1, residual arsenic concentration decreased to less than 10 μg/L. The adsorption kinetics data were analyzed using different kinetic models including pseudo first-order model, pseudo second-order model, Elovich model and intraparticle diffusion model. Pseudo second-order kinetic model was the most appropriate model to describe the adsorption kinetics. The adsorption percentage of As(Ⅲ) increased in the pH range of 2-3 while it decreased with the increase of pH (3 < pH < 10). The effects of coexisting anions on As(Ⅲ) removal using FM-1 and FM-2 were also studied and the order of the effects is as follows: NO3-, Cl-, F- < SO42-, HCO3- < H2PO4-, indicating that H2PO4- is the major competitor with As(Ⅲ) for adsorptive sites on the surface of the adsorbents. The higher adsorption capacity of FM-1 makes it potentially attractive adsorbent for the removal of As(Ⅲ) from groundwater.

     

  • loading
  • Amirbahman, A., Kent, D. B., Curtis, G. P., et al., 2006. Kinetics of Sorption and Abiotic Oxidation of Arsenic(Ⅲ) by Aquifer Materials. Geochimica et Cosmochimica Acta, 70(3): 533-547. doi: 10.1016/j.gca.2005.10.036
    An, B., Liang, Q. Q., Zhao, D. Y., 2011. Removal of Arsenic(Ⅴ) from Spent Ion Exchange Brine Using a New Class of Starch-Bridged Magnetite Nanoparticles. Water Research, 45(5): 1961-1972. doi: 10.1016/j.watres.2011.01.004
    Brown, K. G., Ross, G. L., 2002. Arsenic, Drinking Water, and Health: A Position Paper of the American Council on Science and Health. Regulatory Toxicology and Pharmacology, 36(2): 162-174. doi: 10.1006/rtph.2002.1573
    Chang, F. F., Qu, J. H., Liu, H. J., et al., 2009. Fe-Mn Binary Oxide Incorporated into Diatomite as an Adsorbent for Arsenite Removal: Preparation and Evaluation. Journal of Colloid and Interface Science, 338(2): 353-358. doi: 10.1016/j.jcis.2009.06.049
    Cheng, Z. Q., van Geen, A. V., Louis, R., et al., 2005. Removal of Methylated Arsenic in Groundwater with Iron Filings. Environmental Science & Technology, 39(19): 7662-7666. doi: 10.1021/es050429w
    Cornell, R. M., Schwertmann, U., 2003. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. VCH Publishers, New York. 1-662
    Cullen, W. R., Reimer, K. J., 1989. Arsenic Speciation in the Environment. Chemical Reviews, 89(4): 713-764. doi: 10.1021/cr00094a002
    Demirbas, E., Kobya, M., Senturk, E., et al., 2004. Adsorption Kinetics for the Removal of Chromium (Ⅵ) from Aqueous Solutions on the Activated Carbons Prepared from Agricultural Wastes. Water SA, 30(4): 533-540. doi: 10.4314/wsa.v30i4.5106
    Ho, Y. S., McKay, G., 1998. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Safety and Environmental Protection, 76(4): 332-340. doi: 10.1205/095758298529696
    Ho, Y. S., McKay, G., Wase, D. A. J., et al., 2000. Study of the Sorption of Divalent Metal Ions on to Peat. Adsorption Science & Technology, 18(7): 639-650. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg22/ref22&dbid=16&doi=10.1139%2Fv2012-058&key=10.1260%2F0263617001493693
    Jang, M., Min, S. H., Kim, T. H., et al., 2006. Removal of Arsenite and Arsenate Using Hydrous Ferric Oxide Incorporated into Naturally Occurring Porous Diatomite. Environmental Science & Technology, 40(5): 1636-1643. doi: 10.1021/es051501t
    Kahani, S. A., Jafari, M., 2009. A New Method for Preparation of Magnetite from Iron Oxyhydroxide or Iron Oxide and Ferrous Salt in Aqueous Solution. Journal of Magnetism and Magnetic Materials, 321(13): 1951-1954. doi: 10.1016/j.jmmm.2008.12.026
    Katsoyiannis, I., Zouboulis, A., Althoff, H., et al., 2002. As(Ⅲ) Removal from Groundwaters Using Fixed-Bed Upflow Bioreactors. Chemosphere, 47(3): 325-332. doi: 10.1016/s0045-6535(01)00306-x
    Luo, X. B., Wang, C. C., Luo, S. L., et al., 2012. Adsorption of As(Ⅲ) and As(Ⅴ) from Water Using Magnetite Fe3O4-Reduced Graphite Oxide-MnO2 Nanocomposites. Chemical Engineering Journal, 187: 45-52. doi: 10.1016/j.cej.2012.01.073
    Luo, X. B., Wang, C. C., Wang, L. C., et al., 2013. Nanocomposites of Graphene Oxide-Hydrated Zirconium Oxide for Simultaneous Removal of As(Ⅲ) and As(Ⅴ) from Water. Chemical Engineering Journal, 220: 98-106. doi: 10.1016/j.cej.2013.01.017
    Manning, B. A., Fendorf, S. E., Bostick, B., et al., 2002. Arsenic(Ⅲ) Oxidation and Arsenic(Ⅴ) Adsorption Reactions on Synthetic Birnessite. Environmental Science & Technology, 36(5): 976-981. doi: 10.1021/es0110170
    Mohan, D., Pittman, C. U. Jr., 2007. Arsenic Removal from Water/Wastewater Using Adsorbents—A Critical Review. Journal of Hazardous Materials, 142(1/2): 1-53. doi: 10.1016/j.jhazmat.2007.01.006
    Mostafa, M. G., Chen, Y. H., Jean, J. S., et al., 2011. Kinetics and Mechanism of Arsenate Removal by Nanosized Iron Oxide-Coated Perlite. Journal of Hazardous Materials, 187(1-3): 89-95. doi: 10.1016/j.jhazmat.2010.12.117
    Senthilkumaar, S., Rajendran, K., Banerjee, S., et al., 2008. Influence of Mn Doping on the Microstructure and Optical Property of ZnO. Materials Science in Semiconductor Processing, 11(1): 6-12. doi: 10.1016/j.mssp.2008.04.005
    Smedley, P. L., Kinniburgh, D. G., 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517-568. doi: 10.1016/s0883-2927(02)00018-5
    Stumm, W., 1992. Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems. John Wiley & Son Inc., New York. 1-428
    Tournassat, C., Charlet, L., Bosbach, D., et al., 2002. Arsenic(Ⅲ) Oxidation by Birnessite and Precipitation of Manganese(Ⅱ) Arsenate. Environmental Science & Technology, 36(3): 493-500. doi: 10.1021/es0109500
    Wolthers, M., Charlet, L., van Der Weijden, C. H. V. D., et al., 2005. Arsenic Mobility in the Ambient Sulfidic Environment: Sorption of Arsenic(Ⅴ) and Arsenic(Ⅲ) onto Disordered Mackinawite. Geochimica et Cosmochimica Acta, 69(14): 3483-3492. doi: 10.1016/j.gca.2005.03.003
    Wu, F. C., Tseng, R. L., Juang, R. S., 2001. Kinetic Modeling of Liquid-Phase Adsorption of Reactive Dyes and Metal Ions on Chitosan. Water Research, 35(3): 613-618. doi: 10.1016/s0043-1354(00)00307-9
    Zhang, G. S., Qu, J. H., Liu, H. J., et al., 2007. Preparation and Evaluation of a Novel Fe-Mn Binary Oxide Adsorbent for Effective Arsenite Removal. Water Research, 41(9): 1921-1928. doi: 10.1016/j.watres.2007.02.009
    Zhang, G. S., Liu, F. D., Liu, H. J., et al., 2014. Respective Role of Fe and Mn Oxide Contents for Arsenic Sorption in Iron and Manganese Binary Oxide: An X-Ray Absorption Spectroscopy Investigation. Environmental Science & Technology, 48(17): 10316-10322. doi: 10.1021/es501527c
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(771) PDF downloads(147) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return