Barron, A. R., Wurzburger, N., Bellenger, J. P., et al., 2009. Molybdenum Limitation of Asymbiotic Nitrogen Fixation in Tropical Forest Soils. Nature Geoscience, 2(1): 42-45. https://doi.org/10.1038/ngeo366 |
Basilier, K., Granhall, U., Stenström, T. A., et al., 1978. Nitrogen Fixation in Wet Minerotrophic Moss Communities of a Subarctic Mire. Oikos, 31(2): 236-246. https://doi.org/10.2307/3543568 |
Bellenger, J. P., Wichard, T., Xu, Y., et al., 2011. Essential Metals for Nitrogen Fixation in a Free-Living N2-Fixing Bacterium: Chelation, Homeostasis and High Use Efficiency. Environmental Microbiology, 13(6): 1395-1411. https://doi.org/10.1111/j.1462-2920.2011.02440.x |
Bellenger, J. P., Xu, Y., Zhang, X., et al., 2014. Possible Contribution of Alternative Nitrogenases to Nitrogen Fixation by Asymbiotic N2-Fixing Bacteria in Soils. Soil Biology and Biochemistry, 69: 413-420. https://doi.org/10.1016/j.soilbio.2013.11.015 |
Bernot, M. J., Dodds, W. K., 2005. Nitrogen Retention, Removal, and Saturation in Lotic Ecosystems. Ecosystems, 8(4): 442-453. https://doi.org/10.1007/s10021-003-0143-y |
Berthrong, S. T., Yeager, C. M., Gallegos-Graves, L., et al., 2014. Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities than Elevated Atmospheric CO2. Applied and Environmental Microbiology, 80(10): 3103-3112. https://doi.org/10.1128/aem.04034-13 doi: 10.1128/AEM.04034-13 |
Bobbink, R., Hicks, K., Galloway, J., et al., 2010. Global Assessment of Nitrogen Deposition Effects on Terrestrial Plant Diversity: A Synthesis. Ecological Applications, 20(1): 30-59. https://doi.org/10.1890/08-1140.1 |
Bragina, A., Berg, C., Müller, H., et al., 2013. Insights into Functional Bacterial Diversity and Its Effects on Alpine Bog Ecosystem Functioning. Scientific Reports, 3(1): 1995. https://doi.org/10.1038/srep01955 doi: 10.1038/srep01995 |
Bragina, A., Maier, S., Berg, C., et al., 2012. Similar Diversity of Alphaproteobacteria and Nitrogenase Gene Amplicons on Two Related Sphagnum Mosses. Frontiers in Microbiology, 2: 275. https://doi.org/10.3389/fmicb.2011.00275 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3261640 |
Chen, X., Zhang, L. M., Shen, J. P., et al., 2011. Abundance and Community Structure of Ammonia-Oxidizing Archaea and Bacteria in an Acid Paddy Soil. Biology and Fertility of Soils, 47(3): 323-331. https://doi.org/10.1007/s00374-011-0542-8 |
Cláudio, A. N., 2016. Microbial Ecology: Do It Yourself Nitrification. Nature Reviews Microbiology, 14(2): 61-61. https://doi.org/10.1038/nrmicro.2015.20 |
Coelho, M. R. R., de Vos, M., Carneiro, N. P., et al., 2008. Diversity of nifH Gene Pools in the Rhizosphere of Two Cultivars of Sorghum (Sorghum Bicolor) Treated with Contrasting Levels of Nitrogen Fertilizer. FEMS Microbiology Letters, 279(1): 15-22. https://doi.org/10.1111/j.1574-6968.2007.00975.x doi: 10.1111/fml.2008.279.issue-1 |
Daims, H., Lebedeva, E. V., Pjevac, P., et al., 2015. Complete Nitrification by Nitrospira Bacteria. Nature, 528(7583): 504-509. https://doi.org/10.1038/nature16461 |
Dang, H. Y., Yang, J. Y., Li, J., et al., 2013. Environment-Dependent Distribution of the Sediment nifH-Harboring Microbiota in the Northern South China Sea. Applied and Environmental Microbiology, 79(1): 121-132. https://doi.org/10.1128/aem.01889-12 doi: 10.1128/AEM.01889-12 |
de la Torre, J. R., Walker, C. B., Ingalls, A. E., et al., 2008. Cultivation of a Thermophilic Ammonia Oxidizing Archaeon Synthesizing Crenarchaeol. Environmental Microbiology, 10(3): 810-818. https://doi.org/10.1111/j.1462-2920.2007.01506.x doi: 10.1111/emi.2008.10.issue-3 |
Drenovsky, R. E., Vo, D., Graham, K. J., et al., 2004. Soil Water Content and Organic Carbon Availability are Major Determinants of Soil Microbial Community Composition. Microbial Ecology, 48(3): 424-430. https://doi.org/10.1007/s00248-003-1063-2 |
Francis, C. A., Roberts, K. J., Beman, J. M., et al., 2005. Ubiquity and Diversity of Ammonia-Oxidizing Archaea in Water Columns and Sediments of the Ocean. Proceedings of the National Academy of Sciences, 102(41): 14683-14688. https://doi.org/10.1073/pnas.0506625102 |
Frijlink, M. J., Abee, T., Laanbroek, H. J., et al., 1992. The Bioenergetics of Ammonia and Hydroxylamine Oxidation in Nitrosomonas Europaea at Acid and Alkaline pH. Archives of Microbiology, 157(2): 194-199. https://doi.org/10.1007/bf00245290 doi: 10.1007/BF00245290 |
Gaby, J. C., Buckley, D. H., 2012. A Comprehensive Evaluation of PCR Primers to Amplify the nifH Gene of Nitrogenase. PLoS ONE, 7(7): e42149. https://doi.org/10.1371/journal.pone.0042149 |
Hatzenpichler, R., 2012. Diversity, Physiology, and Niche Differentiation of Ammonia-Oxidizing Archaea. Applied and Environmental Microbiology, 78(21): 7501-7510. https://doi.org/10.1128/aem.01960-12 doi: 10.1128/AEM.01960-12 |
Hatzenpichler, R., Lebedeva, E. V., Spieck, E., et al., 2008. A Moderately Thermophilic Ammonia-Oxidizing Crenarchaeote from a Hot Spring. Proceedings of the National Academy of Sciences, 105(6): 2134-2139. https://doi.org/10.1073/pnas.0708857105 |
Hayden, H. L., Drake, J., Imhof, M., et al., 2010. The Abundance of Nitrogen Cycle Genes AmoA and nifH Depends on Land-Uses and Soil Types in South-Eastern Australia. Soil Biology and Biochemistry, 42(10): 1774-1783. https://doi.org/10.1016/j.soilbio.2010.06.015 |
He, J. Z., Shen, J. P., Zhang, L. M., et al., 2007. Quantitative Analyses of the Abundance and Composition of Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea of a Chinese Upland Red Soil under Long-Term Fertilization Practices. Environmental Microbiology, 9(9): 2364-2374. https://doi.org/10.1111/j.1462-2920.2007.01358.x doi: 10.1111/emi.2007.9.issue-9 |
Jiang, H. C., Dong, H. L., Yu, B. S., et al., 2009. Diversity and Abundance of Ammonia-Oxidizing Archaea and Bacteria in Qinghai Lake, Northwestern China. Geomicrobiology Journal, 26(3): 199-211. https://doi.org/10.1080/01490450902744004 |
Kang, W., Tai, X., Li, S., et al., 2013. Research on the Number of Nitrogen-Fixing Microorganism and Community Structure of Nitrogen-Fixing (nifH) Genes in the Alkali Soils of Alpine Steppe in the Qilian Mountains. Journal of Glaciology and Geocryology, 35(1): 208-216 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/bcdt201301025 |
Kip, N., van Winden, J. F., Pan, Y., et al., 2010. Global Prevalence of Methane Oxidation by Symbiotic Bacteria in Peat-Moss Ecosystems. Nature Geoscience, 3(9): 617-621. https://doi.org/10.1038/ngeo939 |
Kits, K. D., Sedlacek, C. J., Lebedeva, E. V., et al., 2017. Kinetic Analysis of a Complete Nitrifier Reveals an Oligotrophic Lifestyle. Nature, 549(7671): 269-272. https://doi.org/10.1038/nature23679 |
Kostka, J. E., Weston, D. J., Glass, J. B., et al., 2016. The Sphagnum Microbiome: New Insights from an Ancient Plant Lineage. New Phytologist, 211(1): 57-64. https://doi.org/10.13039/100006132 doi: 10.1111/nph.13993 |
Kowalchuk, G. A., Stephen, J. R., et al., 2001. Ammonia-Oxidizing Bacteria: A Model for Molecular Microbial Ecology. Annual Review of Microbiology, 55(1): 485-529. https://doi.org/10.1146/annurev.micro.55.1.485 doi: 10.1146-annurev.micro.55.1.485/ |
Larmola, T., Leppanen, S. M., Tuittila, E. S., et al., 2014. Methanotrophy Induces Nitrogen Fixation during Peatland Development. Proceedings of the National Academy of Sciences, 111(2): 734-739. https://doi.org/10.1073/pnas.1314284111 |
Lehtovirta-Morley, L. E., Stoecker, K., Vilcinskas, A., et al., 2011. Cultivation of an Obligate Acidophilic Ammonia Oxidizer from a Nitrifying Acid Soil. Proceedings of the National Academy of Sciences, 108(38): 15892-15897. https://doi.org/10.1073/pnas.1107196108 |
Leppänen, S. M., Rissanen, A. J., Tiirola, M., 2014. Nitrogen Fixation in Sphagnum Mosses is Affected by Moss Species and Water Table Level. Plant and Soil, 389(1/2): 185-196. https://doi.org/10.1007/s11104-014-2356-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=990299148721b764c79d79af6de1b562 |
Liebner, S., Svenning, M. M., 2013. Environmental Transcription of mmoX by Methane-Oxidizing Proteobacteria in a Subarctic Palsa Peatland. Applied and Environmental Microbiology, 79(2): 701-706. https://doi.org/10.1128/aem.02292-12 doi: 10.1128/AEM.02292-12 |
Limpens, J., Heijmans, M. M., Berendse, F., 2006. The Nitrogen Cycle in Boreal Peatlands. Boreal Peatland Ecosystems, 188: 195-230. https://doi.org/10.1007/978-3-540-31913-9_10 |
Liu, Z. H., Huang, S. B., Sun, G. P., et al., 2011. Diversity and Abundance of Ammonia-Oxidizing Archaea in the Dongjiang River, China. Microbiological Research, 166(5): 337-345. https://doi.org/10.13039/501100001809 doi: 10.1016/j.micres.2010.08.002 |
Lu, L., Han, W. Y., Zhang, J. B., et al., 2012. Nitrification of Archaeal Ammonia Oxidizers in Acid Soils is Supported by Hydrolysis of Urea. The ISME Journal, 6(10): 1978-1984. https://doi.org/10.1038/ismej.2012.45 |
Luo, L., Wang, Z., Mao, D., et al., 2016. Connotation and Differentiation of Terminology on Main Kinds of Wetlands in English. Chinese Journal of Ecology, 35(3): 834-842 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/stxzz201603036 |
Mary, A. B., Stephen, J. R., Kowalchuk, G. A., et al., 1999. Comparative Diversity of Ammonia Oxidizer 16S rRNA Gene Sequences in Native, Tilled, and Successional Soils. Appl. Environ. Microbiol., 65(7): 2994-3000 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_91447 |
Meng, H., Katayama, Y., Gu, J. D., 2017. More Wide Occurrence and Dominance of Ammonia-Oxidizing Archaea than Bacteria at Three Angkor Sandstone Temples of Bayon, Phnom Krom and Wat Athvea in Cambodia. International Biodeterioration & Biodegradation, 117: 78-88. https://doi.org/10.1016/j.ibiod.2016.11.012 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9d3e128a3793fd938789eaf8c794275 |
Moisander, P. H., Beinart, R. A., Hewson, I., et al., 2010. Unicellular Cyanobacterial Distributions Broaden the Oceanic N2 Fixation Domain. Science, 327(5972): 1512-1514. https://doi.org/10.1126/science.1185468 |
Nicol, G. W., Leininger, S., Schleper, C., et al., 2008. The Influence of Soil PH on the Diversity, Abundance and Transcriptional Activity of Ammonia Oxidizing Archaea and Bacteria. Environmental Microbiology, 10(11): 2966-2978. https://doi.org/10.1111/j.1462-2920.2008.01701.x doi: 10.1111/emi.2008.10.issue-11 |
Niederberger, T. D., Sohm, J. A., Tirindelli, J., et al., 2012. Diverse and Highly Active Diazotrophic Assemblages Inhabit Ephemerally Wetted Soils of the Antarctic Dry Valleys. FEMS Microbiology Ecology, 82(2): 376-390. https://doi.org/10.1111/j.1574-6941.2012.01390.x doi: 10.1111/fem.2012.82.issue-2 |
Oliveira, A. L. M., Canuto, E. L., Silva, E. E., et al., 2004. Survival of Endophytic Diazotrophic Bacteria in Soil under Different Moisture Levels. Brazilian Journal of Microbiology, 35(4): 295-299. https://doi.org/10.1590/s1517-83822004000300005 doi: 10.1590/S1517-83822004000300005 |
Oved, T., Shaviv, A., Goldrath, T., et al., 2001. Influence of Effluent Irrigation on Community Composition and Function of Ammonia-Oxidizing Bacteria in Soil. Applied and Environmental Microbiology, 67(8): 3426-3433. https://doi.org/10.1128/aem.67.8.3426-3433.2001 doi: 10.1128/AEM.67.8.3426-3433.2001 |
Pankratov, T. A., Serkebaeva, Y. M., Kulichevskaya, I. S., et al., 2008. Substrate-Induced Growth and Isolation of Acidobacteria from Acidic Sphagnum Peat. The ISME Journal, 2(5): 551-560. https://doi.org/10.1038/ismej.2008.7 |
Papaefthimiou, D., van Hove, C., Lejeune, A., et al., 2008. Diversity and Host Specificity of Azollacyanobionts. Journal of Phycology, 44(1): 60-70. https://doi.org/10.1111/j.1529-8817.2007.00448.x doi: 10.1111/jpy.2008.44.issue-1 |
Qin, Y. M., Wang, J. X., Xie, S. C., et al., 2010. Morphological Variation and Habitat Selection of Testate Amoebae in Dajiuhu Peatland, Central China. Journal of Earth Science, 21(S1): 253-256. https://doi.org/10.1007/s12583-010-0228-4 |
RCore, T., 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Online: http://www.R-project.org |
Rotthauwe, J. H., Witzel, K. P., Liesack, W., 1997. The Ammonia Monooxygenase Structural Gene amoA as a Functional Marker: Molecular Fine-Scale Analysis of Natural Ammonia-Oxidizing Populations. Applied and Environmental Microbiology, 63(12): 4704-4712 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_168793 |
Schwintzer, C. R., 1983. Nonsymbiotic and Symbiotic Nitrogen Fixation in a Weakly Minerotrophic Peatland. American Journal of Botany, 70(7): 1071. https://doi.org/10.2307/2442817 doi: 10.1002/j.1537-2197.1983.tb07908.x |
Silva, M. C. P. E., Semenov, A. V., van Elsas, J. D., et al., 2011. Seasonal Variations in the Diversity and Abundance of Diazotrophic Communities Across Soils. FEMS Microbiology Ecology, 77(1): 57-68. https://doi.org/10.1111/j.1574-6941.2011.01081.x doi: 10.1111/fem.2011.77.issue-1 |
Stahl, D. A., de la Torre, J. R., 2012. Physiology and Diversity of Ammonia-Oxidizing Archaea. Annual Review of Microbiology, 66(1): 83-101. https://doi.org/10.1146/annurev-micro-092611-150128 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3197170 |
Sun, W., Xia, C. Y., Xu, M. Y., et al., 2013. Distribution and Abundance of Archaeal and Bacterial Ammonia Oxidizers in the Sediments of the Dongjiang River, a Drinking Water Supply for Hong Kong. Microbes and Environments, 28(4): 457-465. https://doi.org/10.1264/jsme2.me13066 doi: 10.1264/jsme2.ME13066 |
Tahon, G., Tytgat, B., Stragier, P., et al., 2016. Analysis of CbbL, nifH, and PufLM in Soils from the Sør Rondane Mountains, Antarctica, Reveals a Large Diversity of Autotrophic and Phototrophic Bacteria. Microbial Ecology, 71(1): 131-149. https://doi.org/10.13039/501100003130 doi: 10.1007/s00248-015-0704-6 |
Tamura, K., Stecher, G., Peterson, D., et al., 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12): 2725-2729. https://doi.org/10.1093/molbev/mst197 |
Tourna, M., Stieglmeier, M., Spang, A., et al., 2011. Nitrososphaera Viennensis, an Ammonia Oxidizing Archaeon from Soil. Proceedings of the National Academy of Sciences, 108(20): 8420-8425. https://doi.org/10.1073/pnas.1013488108 |
van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., et al., 2015. Complete Nitrification by a Single Microorganism. Nature, 528(7583): 555-559. https://doi.org/10.1038/nature16459 |
Vile, M. A., Kelman Wieder, R., Živković, T., et al., 2014. N2-Fixation by Methanotrophs Sustains Carbon and Nitrogen Accumulation in Pristine Peatlands. Biogeochemistry, 121(2): 317-328. https://doi.org/10.1007/s10533-014-0019-6 |
Wang, M., Liu, Z., Ma, X., et al., 2013. Distribution Law of Peat in the World. Wetland Science, 11(3): 339-346 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201303006 |
Wang, R. C., Wang, H. M., Xiang, X., et al., 2017. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 29(4): 969-976. https://doi.org/10.1007/s12583-017-0818-5 http://en.earth-science.net/WebPage/Article.aspx?id=1532 |
Warren, M. J., Lin, X. J., Gaby, J. C., et al., 2017. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Applied and Environmental Microbiology, 83(17): 01174-17. https://doi.org/10.1128/aem.01174-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=802a1868db1acd709122d292e30f7d8b |
Yang, H., Ding, W. H., Wang, J. X., et al., 2012. Soil PH Impact on Microbial Tetraether Lipids and Terrestrial Input Index (BIT) in China. Science China Earth Sciences, 55(2): 236-245. https://doi.org/10.1007/s11430-011-4295-x |
Ye, L., Zhu, G., Wang, Y., et al., 2011. Abundance and Biodiversity of Ammonia-Oxidizing Archaea and Bacteria in Littoral Wetland of Baiyangdian Lake, North China. Acta Ecologica Sinica, 31(8): 2209-2215 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201108019 |
Yeager, C. M., Kornosky, J. L., Housman, D. C., et al., 2004. Diazotrophic Community Structure and Function in Two Successional Stages of Biological Soil Crusts from the Colorado Plateau and Chihuahuan Desert. Applied and Environmental Microbiology, 70(2): 973-983. https://doi.org/10.1128/aem.70.2.973-983.2004 doi: 10.1128/AEM.70.2.973-983.2004 |
Zadorina, E. V., Slobodova, N. V., Boulygina, E. S., et al., 2009. Analysis of the Diversity of Diazotrophic Bacteria in Peat Soil by Cloning of the nifH Gene. Microbiology, 78(2): 218-226. https://doi.org/10.1134/s0026261709020131 doi: 10.1134/S0026261709020131 |
Zhang, H., Li, P., Hu, X., et al., 2006. Screening and Cultivation Conditions of Two Nitrosobacteria Strains. Environmental Protection of Chemical Industry, 26(5): 366-369 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hghb200605005 |
Zhou, H. X., Dang, H. Y., Klotz, M. G., 2016. Environmental Conditions Outweigh Geographical Contiguity in Determining the Similarity of nifH-Harboring Microbial Communities in Sediments of Two Disconnected Marginal Seas. Frontiers in Microbiology, 7(236): 1111. https://doi.org/10.3389/fmicb.2016.01111 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004707320 |