Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 2
Apr 2019
Turn off MathJax
Article Contents
Ying Xu, Hongmei Wang, Xing Xiang, Ruicheng Wang, Wen Tian. Vertical Variation of Nitrogen Fixers and Ammonia Oxidizers along a Sediment Profile in the Dajiuhu Peatland, Central China. Journal of Earth Science, 2019, 30(2): 397-406. doi: 10.1007/s12583-018-0982-2
Citation: Ying Xu, Hongmei Wang, Xing Xiang, Ruicheng Wang, Wen Tian. Vertical Variation of Nitrogen Fixers and Ammonia Oxidizers along a Sediment Profile in the Dajiuhu Peatland, Central China. Journal of Earth Science, 2019, 30(2): 397-406. doi: 10.1007/s12583-018-0982-2

Vertical Variation of Nitrogen Fixers and Ammonia Oxidizers along a Sediment Profile in the Dajiuhu Peatland, Central China

doi: 10.1007/s12583-018-0982-2
More Information
  • Corresponding author: Hongmei Wang
  • Received Date: 27 Jul 2017
  • Accepted Date: 22 May 2018
  • Publish Date: 01 Apr 2019
  • To investigate the vertical variation of microbial functional groups particular nitrogen fixers and ammonia oxidizers, sediment samples from a 155 cm deep peat profile were collected from the acidic Dajiuhu Peatland and subsequently subjected to clone library construction and quantification. Results showed that nifH gene abundance varied between 105-108 copies per gram dry sediment and reduced gradually with depth. The abundances of ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) abundance were generally comparable in each sample. More AOA was observed with a depth ≤55 cm, whereas AOB was more abundant with a depth >55 cm. Phylogenetically nifH could be divided into 94 OTUs which mainly affiliated with α-Proteobacteria. AOA were affiliated with Nitrosotalea from Group 1.1a associated (nearly 90%) and Nitrososphaera from Group I.1b. All AOB belonged to Nitrosospira. Notably, DJH11 with the depth of 50-55 cm was observed to have the highest abundance and the highest diversity of nitrogen fixers and ammonia oxidizers among all the samples. Pearson's correlation analysis showed a positive relationship between water content and pH with the nifH gene abundance. Our results offer the first insight about the microbial community composition and diversity involved in nitrogen cycles in the Dajiuhu Peatland.

     

  • loading
  • Barron, A. R., Wurzburger, N., Bellenger, J. P., et al., 2009. Molybdenum Limitation of Asymbiotic Nitrogen Fixation in Tropical Forest Soils. Nature Geoscience, 2(1): 42-45. https://doi.org/10.1038/ngeo366
    Basilier, K., Granhall, U., Stenström, T. A., et al., 1978. Nitrogen Fixation in Wet Minerotrophic Moss Communities of a Subarctic Mire. Oikos, 31(2): 236-246. https://doi.org/10.2307/3543568
    Bellenger, J. P., Wichard, T., Xu, Y., et al., 2011. Essential Metals for Nitrogen Fixation in a Free-Living N2-Fixing Bacterium: Chelation, Homeostasis and High Use Efficiency. Environmental Microbiology, 13(6): 1395-1411. https://doi.org/10.1111/j.1462-2920.2011.02440.x
    Bellenger, J. P., Xu, Y., Zhang, X., et al., 2014. Possible Contribution of Alternative Nitrogenases to Nitrogen Fixation by Asymbiotic N2-Fixing Bacteria in Soils. Soil Biology and Biochemistry, 69: 413-420. https://doi.org/10.1016/j.soilbio.2013.11.015
    Bernot, M. J., Dodds, W. K., 2005. Nitrogen Retention, Removal, and Saturation in Lotic Ecosystems. Ecosystems, 8(4): 442-453. https://doi.org/10.1007/s10021-003-0143-y
    Berthrong, S. T., Yeager, C. M., Gallegos-Graves, L., et al., 2014. Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities than Elevated Atmospheric CO2. Applied and Environmental Microbiology, 80(10): 3103-3112. https://doi.org/10.1128/aem.04034-13 doi: 10.1128/AEM.04034-13
    Bobbink, R., Hicks, K., Galloway, J., et al., 2010. Global Assessment of Nitrogen Deposition Effects on Terrestrial Plant Diversity: A Synthesis. Ecological Applications, 20(1): 30-59. https://doi.org/10.1890/08-1140.1
    Bragina, A., Berg, C., Müller, H., et al., 2013. Insights into Functional Bacterial Diversity and Its Effects on Alpine Bog Ecosystem Functioning. Scientific Reports, 3(1): 1995. https://doi.org/10.1038/srep01955 doi: 10.1038/srep01995
    Bragina, A., Maier, S., Berg, C., et al., 2012. Similar Diversity of Alphaproteobacteria and Nitrogenase Gene Amplicons on Two Related Sphagnum Mosses. Frontiers in Microbiology, 2: 275. https://doi.org/10.3389/fmicb.2011.00275 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3261640
    Chen, X., Zhang, L. M., Shen, J. P., et al., 2011. Abundance and Community Structure of Ammonia-Oxidizing Archaea and Bacteria in an Acid Paddy Soil. Biology and Fertility of Soils, 47(3): 323-331. https://doi.org/10.1007/s00374-011-0542-8
    Cláudio, A. N., 2016. Microbial Ecology: Do It Yourself Nitrification. Nature Reviews Microbiology, 14(2): 61-61. https://doi.org/10.1038/nrmicro.2015.20
    Coelho, M. R. R., de Vos, M., Carneiro, N. P., et al., 2008. Diversity of nifH Gene Pools in the Rhizosphere of Two Cultivars of Sorghum (Sorghum Bicolor) Treated with Contrasting Levels of Nitrogen Fertilizer. FEMS Microbiology Letters, 279(1): 15-22. https://doi.org/10.1111/j.1574-6968.2007.00975.x doi: 10.1111/fml.2008.279.issue-1
    Daims, H., Lebedeva, E. V., Pjevac, P., et al., 2015. Complete Nitrification by Nitrospira Bacteria. Nature, 528(7583): 504-509. https://doi.org/10.1038/nature16461
    Dang, H. Y., Yang, J. Y., Li, J., et al., 2013. Environment-Dependent Distribution of the Sediment nifH-Harboring Microbiota in the Northern South China Sea. Applied and Environmental Microbiology, 79(1): 121-132. https://doi.org/10.1128/aem.01889-12 doi: 10.1128/AEM.01889-12
    de la Torre, J. R., Walker, C. B., Ingalls, A. E., et al., 2008. Cultivation of a Thermophilic Ammonia Oxidizing Archaeon Synthesizing Crenarchaeol. Environmental Microbiology, 10(3): 810-818. https://doi.org/10.1111/j.1462-2920.2007.01506.x doi: 10.1111/emi.2008.10.issue-3
    Drenovsky, R. E., Vo, D., Graham, K. J., et al., 2004. Soil Water Content and Organic Carbon Availability are Major Determinants of Soil Microbial Community Composition. Microbial Ecology, 48(3): 424-430. https://doi.org/10.1007/s00248-003-1063-2
    Francis, C. A., Roberts, K. J., Beman, J. M., et al., 2005. Ubiquity and Diversity of Ammonia-Oxidizing Archaea in Water Columns and Sediments of the Ocean. Proceedings of the National Academy of Sciences, 102(41): 14683-14688. https://doi.org/10.1073/pnas.0506625102
    Frijlink, M. J., Abee, T., Laanbroek, H. J., et al., 1992. The Bioenergetics of Ammonia and Hydroxylamine Oxidation in Nitrosomonas Europaea at Acid and Alkaline pH. Archives of Microbiology, 157(2): 194-199. https://doi.org/10.1007/bf00245290 doi: 10.1007/BF00245290
    Gaby, J. C., Buckley, D. H., 2012. A Comprehensive Evaluation of PCR Primers to Amplify the nifH Gene of Nitrogenase. PLoS ONE, 7(7): e42149. https://doi.org/10.1371/journal.pone.0042149
    Hatzenpichler, R., 2012. Diversity, Physiology, and Niche Differentiation of Ammonia-Oxidizing Archaea. Applied and Environmental Microbiology, 78(21): 7501-7510. https://doi.org/10.1128/aem.01960-12 doi: 10.1128/AEM.01960-12
    Hatzenpichler, R., Lebedeva, E. V., Spieck, E., et al., 2008. A Moderately Thermophilic Ammonia-Oxidizing Crenarchaeote from a Hot Spring. Proceedings of the National Academy of Sciences, 105(6): 2134-2139. https://doi.org/10.1073/pnas.0708857105
    Hayden, H. L., Drake, J., Imhof, M., et al., 2010. The Abundance of Nitrogen Cycle Genes AmoA and nifH Depends on Land-Uses and Soil Types in South-Eastern Australia. Soil Biology and Biochemistry, 42(10): 1774-1783. https://doi.org/10.1016/j.soilbio.2010.06.015
    He, J. Z., Shen, J. P., Zhang, L. M., et al., 2007. Quantitative Analyses of the Abundance and Composition of Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea of a Chinese Upland Red Soil under Long-Term Fertilization Practices. Environmental Microbiology, 9(9): 2364-2374. https://doi.org/10.1111/j.1462-2920.2007.01358.x doi: 10.1111/emi.2007.9.issue-9
    Jiang, H. C., Dong, H. L., Yu, B. S., et al., 2009. Diversity and Abundance of Ammonia-Oxidizing Archaea and Bacteria in Qinghai Lake, Northwestern China. Geomicrobiology Journal, 26(3): 199-211. https://doi.org/10.1080/01490450902744004
    Kang, W., Tai, X., Li, S., et al., 2013. Research on the Number of Nitrogen-Fixing Microorganism and Community Structure of Nitrogen-Fixing (nifH) Genes in the Alkali Soils of Alpine Steppe in the Qilian Mountains. Journal of Glaciology and Geocryology, 35(1): 208-216 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/bcdt201301025
    Kip, N., van Winden, J. F., Pan, Y., et al., 2010. Global Prevalence of Methane Oxidation by Symbiotic Bacteria in Peat-Moss Ecosystems. Nature Geoscience, 3(9): 617-621. https://doi.org/10.1038/ngeo939
    Kits, K. D., Sedlacek, C. J., Lebedeva, E. V., et al., 2017. Kinetic Analysis of a Complete Nitrifier Reveals an Oligotrophic Lifestyle. Nature, 549(7671): 269-272. https://doi.org/10.1038/nature23679
    Kostka, J. E., Weston, D. J., Glass, J. B., et al., 2016. The Sphagnum Microbiome: New Insights from an Ancient Plant Lineage. New Phytologist, 211(1): 57-64. https://doi.org/10.13039/100006132 doi: 10.1111/nph.13993
    Kowalchuk, G. A., Stephen, J. R., et al., 2001. Ammonia-Oxidizing Bacteria: A Model for Molecular Microbial Ecology. Annual Review of Microbiology, 55(1): 485-529. https://doi.org/10.1146/annurev.micro.55.1.485 doi: 10.1146-annurev.micro.55.1.485/
    Larmola, T., Leppanen, S. M., Tuittila, E. S., et al., 2014. Methanotrophy Induces Nitrogen Fixation during Peatland Development. Proceedings of the National Academy of Sciences, 111(2): 734-739. https://doi.org/10.1073/pnas.1314284111
    Lehtovirta-Morley, L. E., Stoecker, K., Vilcinskas, A., et al., 2011. Cultivation of an Obligate Acidophilic Ammonia Oxidizer from a Nitrifying Acid Soil. Proceedings of the National Academy of Sciences, 108(38): 15892-15897. https://doi.org/10.1073/pnas.1107196108
    Leppänen, S. M., Rissanen, A. J., Tiirola, M., 2014. Nitrogen Fixation in Sphagnum Mosses is Affected by Moss Species and Water Table Level. Plant and Soil, 389(1/2): 185-196. https://doi.org/10.1007/s11104-014-2356-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=990299148721b764c79d79af6de1b562
    Liebner, S., Svenning, M. M., 2013. Environmental Transcription of mmoX by Methane-Oxidizing Proteobacteria in a Subarctic Palsa Peatland. Applied and Environmental Microbiology, 79(2): 701-706. https://doi.org/10.1128/aem.02292-12 doi: 10.1128/AEM.02292-12
    Limpens, J., Heijmans, M. M., Berendse, F., 2006. The Nitrogen Cycle in Boreal Peatlands. Boreal Peatland Ecosystems, 188: 195-230. https://doi.org/10.1007/978-3-540-31913-9_10
    Liu, Z. H., Huang, S. B., Sun, G. P., et al., 2011. Diversity and Abundance of Ammonia-Oxidizing Archaea in the Dongjiang River, China. Microbiological Research, 166(5): 337-345. https://doi.org/10.13039/501100001809 doi: 10.1016/j.micres.2010.08.002
    Lu, L., Han, W. Y., Zhang, J. B., et al., 2012. Nitrification of Archaeal Ammonia Oxidizers in Acid Soils is Supported by Hydrolysis of Urea. The ISME Journal, 6(10): 1978-1984. https://doi.org/10.1038/ismej.2012.45
    Luo, L., Wang, Z., Mao, D., et al., 2016. Connotation and Differentiation of Terminology on Main Kinds of Wetlands in English. Chinese Journal of Ecology, 35(3): 834-842 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/stxzz201603036
    Mary, A. B., Stephen, J. R., Kowalchuk, G. A., et al., 1999. Comparative Diversity of Ammonia Oxidizer 16S rRNA Gene Sequences in Native, Tilled, and Successional Soils. Appl. Environ. Microbiol., 65(7): 2994-3000 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_91447
    Meng, H., Katayama, Y., Gu, J. D., 2017. More Wide Occurrence and Dominance of Ammonia-Oxidizing Archaea than Bacteria at Three Angkor Sandstone Temples of Bayon, Phnom Krom and Wat Athvea in Cambodia. International Biodeterioration & Biodegradation, 117: 78-88. https://doi.org/10.1016/j.ibiod.2016.11.012 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e9d3e128a3793fd938789eaf8c794275
    Moisander, P. H., Beinart, R. A., Hewson, I., et al., 2010. Unicellular Cyanobacterial Distributions Broaden the Oceanic N2 Fixation Domain. Science, 327(5972): 1512-1514. https://doi.org/10.1126/science.1185468
    Nicol, G. W., Leininger, S., Schleper, C., et al., 2008. The Influence of Soil PH on the Diversity, Abundance and Transcriptional Activity of Ammonia Oxidizing Archaea and Bacteria. Environmental Microbiology, 10(11): 2966-2978. https://doi.org/10.1111/j.1462-2920.2008.01701.x doi: 10.1111/emi.2008.10.issue-11
    Niederberger, T. D., Sohm, J. A., Tirindelli, J., et al., 2012. Diverse and Highly Active Diazotrophic Assemblages Inhabit Ephemerally Wetted Soils of the Antarctic Dry Valleys. FEMS Microbiology Ecology, 82(2): 376-390. https://doi.org/10.1111/j.1574-6941.2012.01390.x doi: 10.1111/fem.2012.82.issue-2
    Oliveira, A. L. M., Canuto, E. L., Silva, E. E., et al., 2004. Survival of Endophytic Diazotrophic Bacteria in Soil under Different Moisture Levels. Brazilian Journal of Microbiology, 35(4): 295-299. https://doi.org/10.1590/s1517-83822004000300005 doi: 10.1590/S1517-83822004000300005
    Oved, T., Shaviv, A., Goldrath, T., et al., 2001. Influence of Effluent Irrigation on Community Composition and Function of Ammonia-Oxidizing Bacteria in Soil. Applied and Environmental Microbiology, 67(8): 3426-3433. https://doi.org/10.1128/aem.67.8.3426-3433.2001 doi: 10.1128/AEM.67.8.3426-3433.2001
    Pankratov, T. A., Serkebaeva, Y. M., Kulichevskaya, I. S., et al., 2008. Substrate-Induced Growth and Isolation of Acidobacteria from Acidic Sphagnum Peat. The ISME Journal, 2(5): 551-560. https://doi.org/10.1038/ismej.2008.7
    Papaefthimiou, D., van Hove, C., Lejeune, A., et al., 2008. Diversity and Host Specificity of Azollacyanobionts. Journal of Phycology, 44(1): 60-70. https://doi.org/10.1111/j.1529-8817.2007.00448.x doi: 10.1111/jpy.2008.44.issue-1
    Qin, Y. M., Wang, J. X., Xie, S. C., et al., 2010. Morphological Variation and Habitat Selection of Testate Amoebae in Dajiuhu Peatland, Central China. Journal of Earth Science, 21(S1): 253-256. https://doi.org/10.1007/s12583-010-0228-4
    RCore, T., 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Online: http://www.R-project.org
    Rotthauwe, J. H., Witzel, K. P., Liesack, W., 1997. The Ammonia Monooxygenase Structural Gene amoA as a Functional Marker: Molecular Fine-Scale Analysis of Natural Ammonia-Oxidizing Populations. Applied and Environmental Microbiology, 63(12): 4704-4712 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_168793
    Schwintzer, C. R., 1983. Nonsymbiotic and Symbiotic Nitrogen Fixation in a Weakly Minerotrophic Peatland. American Journal of Botany, 70(7): 1071. https://doi.org/10.2307/2442817 doi: 10.1002/j.1537-2197.1983.tb07908.x
    Silva, M. C. P. E., Semenov, A. V., van Elsas, J. D., et al., 2011. Seasonal Variations in the Diversity and Abundance of Diazotrophic Communities Across Soils. FEMS Microbiology Ecology, 77(1): 57-68. https://doi.org/10.1111/j.1574-6941.2011.01081.x doi: 10.1111/fem.2011.77.issue-1
    Stahl, D. A., de la Torre, J. R., 2012. Physiology and Diversity of Ammonia-Oxidizing Archaea. Annual Review of Microbiology, 66(1): 83-101. https://doi.org/10.1146/annurev-micro-092611-150128 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3197170
    Sun, W., Xia, C. Y., Xu, M. Y., et al., 2013. Distribution and Abundance of Archaeal and Bacterial Ammonia Oxidizers in the Sediments of the Dongjiang River, a Drinking Water Supply for Hong Kong. Microbes and Environments, 28(4): 457-465. https://doi.org/10.1264/jsme2.me13066 doi: 10.1264/jsme2.ME13066
    Tahon, G., Tytgat, B., Stragier, P., et al., 2016. Analysis of CbbL, nifH, and PufLM in Soils from the Sør Rondane Mountains, Antarctica, Reveals a Large Diversity of Autotrophic and Phototrophic Bacteria. Microbial Ecology, 71(1): 131-149. https://doi.org/10.13039/501100003130 doi: 10.1007/s00248-015-0704-6
    Tamura, K., Stecher, G., Peterson, D., et al., 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12): 2725-2729. https://doi.org/10.1093/molbev/mst197
    Tourna, M., Stieglmeier, M., Spang, A., et al., 2011. Nitrososphaera Viennensis, an Ammonia Oxidizing Archaeon from Soil. Proceedings of the National Academy of Sciences, 108(20): 8420-8425. https://doi.org/10.1073/pnas.1013488108
    van Kessel, M. A. H. J., Speth, D. R., Albertsen, M., et al., 2015. Complete Nitrification by a Single Microorganism. Nature, 528(7583): 555-559. https://doi.org/10.1038/nature16459
    Vile, M. A., Kelman Wieder, R., Živković, T., et al., 2014. N2-Fixation by Methanotrophs Sustains Carbon and Nitrogen Accumulation in Pristine Peatlands. Biogeochemistry, 121(2): 317-328. https://doi.org/10.1007/s10533-014-0019-6
    Wang, M., Liu, Z., Ma, X., et al., 2013. Distribution Law of Peat in the World. Wetland Science, 11(3): 339-346 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201303006
    Wang, R. C., Wang, H. M., Xiang, X., et al., 2017. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 29(4): 969-976. https://doi.org/10.1007/s12583-017-0818-5 http://en.earth-science.net/WebPage/Article.aspx?id=1532
    Warren, M. J., Lin, X. J., Gaby, J. C., et al., 2017. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Applied and Environmental Microbiology, 83(17): 01174-17. https://doi.org/10.1128/aem.01174-17 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=802a1868db1acd709122d292e30f7d8b
    Yang, H., Ding, W. H., Wang, J. X., et al., 2012. Soil PH Impact on Microbial Tetraether Lipids and Terrestrial Input Index (BIT) in China. Science China Earth Sciences, 55(2): 236-245. https://doi.org/10.1007/s11430-011-4295-x
    Ye, L., Zhu, G., Wang, Y., et al., 2011. Abundance and Biodiversity of Ammonia-Oxidizing Archaea and Bacteria in Littoral Wetland of Baiyangdian Lake, North China. Acta Ecologica Sinica, 31(8): 2209-2215 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201108019
    Yeager, C. M., Kornosky, J. L., Housman, D. C., et al., 2004. Diazotrophic Community Structure and Function in Two Successional Stages of Biological Soil Crusts from the Colorado Plateau and Chihuahuan Desert. Applied and Environmental Microbiology, 70(2): 973-983. https://doi.org/10.1128/aem.70.2.973-983.2004 doi: 10.1128/AEM.70.2.973-983.2004
    Zadorina, E. V., Slobodova, N. V., Boulygina, E. S., et al., 2009. Analysis of the Diversity of Diazotrophic Bacteria in Peat Soil by Cloning of the nifH Gene. Microbiology, 78(2): 218-226. https://doi.org/10.1134/s0026261709020131 doi: 10.1134/S0026261709020131
    Zhang, H., Li, P., Hu, X., et al., 2006. Screening and Cultivation Conditions of Two Nitrosobacteria Strains. Environmental Protection of Chemical Industry, 26(5): 366-369 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hghb200605005
    Zhou, H. X., Dang, H. Y., Klotz, M. G., 2016. Environmental Conditions Outweigh Geographical Contiguity in Determining the Similarity of nifH-Harboring Microbial Communities in Sediments of Two Disconnected Marginal Seas. Frontiers in Microbiology, 7(236): 1111. https://doi.org/10.3389/fmicb.2016.01111 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004707320
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(331) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return