Almqvist, B. S. G., Mainprice, D., 2017. Seismic Properties and Anisotropy of the Continental Crust: Predictions Based on Mineral Texture and Rock Microstructure. Reviews of Geophysics, 55(2): 367-433. https://doi.org/10.1002/2016rg000552 |
Biedermann, A., 2018. Magnetic Anisotropy in Single Crystals: A Review. Geosciences, 8(8): 302. https://doi.org/10.3390/geosciences8080302 |
Biedermann, A. R., Koch, C. B., Pettke, T., et al., 2015. Magnetic Anisotropy in Natural Amphibole Crystals. American Mineralogist, 100(8/9): 1940-1951. https://doi.org/10.2138/am-2015-5173 |
Biedermann, A. R., Kunze, K., Hirt, A. M., 2018. Interpreting Magnetic Fabrics in Amphibole-Bearing Rocks. Tectonophysics, 722: 566-576. https://doi.org/10.1016/j.tecto.2017.11.033 |
Biedermann, A. R., Pettke, T., Angel, R. J., et al., 2016. Anisotropy of Magnetic Susceptibility in Alkali Feldspar and Plagioclase. Geophysical Journal International, 205(1): 479-489. https://doi.org/10.1093/gji/ggw042 |
Biedermann, A. R., Jackson, M., Bilardello, D., et al., 2017. Effect of Magnetic Anisotropy on the Natural Remanent Magnetization in the MCU IVe' Layer of the Bjerkreim Sokndal Layered Intrusion, Rogaland, Southern Norway. Journal of Geophysical Research: Solid Earth, 122(2): 790-807. https://doi.org/10.1002/2016jb013506 |
Booth, A. L., Zeitler, P. K., Kidd, W. S. F., et al., 2004. U-Pb Zircon Constraints on the Tectonic Evolution of Southeastern Tibet, Namche Barwa Area. American Journal of Science, 304(10): 889-929. https://doi.org/10.2475/ajs.304.10.889 |
Booth, A. L., Chamberlain, C. P., Kidd, W. S. F., et al., 2009. Constraints on the Metamorphic Evolution of the Eastern Himalayan Syntaxis from Geochronologic and Petrologic Studies of Namche Barwa. Geological Society of America Bulletin, 121(3/4): 385-407. https://doi.org/10.1130/b26041.1 |
Borradaile, G. J., Henry, B., 1997. Tectonic Applications of Magnetic Susceptibility and Its Anisotropy. Earth-Science Reviews, 42(1/2): 49-93. https://doi.org/10.1016/s0012-8252(96)00044-x |
Borradaile, G. J., 2001. Magnetic Fabrics and Petrofabrics: Their Orientation Distributions and Anisotropies. Journal of Structural Geology, 23(10): 1581-1596. https://doi.org/10.1016/s0191-8141(01)00019-0 |
Borradaile, G. J., Jackson, M., 2010. Structural Geology, Petrofabrics and Magnetic Fabrics (AMS, AARM, AIRM). Journal of Structural Geology, 32(10): 1519-1551. https://doi.org/10.1016/j.jsg.2009.09.006 |
Cao, S. Y., Liu, J. L., Leiss, B., 2010. Orientation-Related Deformation Mechanisms of Naturally Deformed Amphibole in Amphibolite Mylonites from the Diancang Shan, SW Yunnan, China. Journal of Structural Geology, 32(5): 606-622. https://doi.org/10.1016/j.jsg.2010.03.012 |
Chadima, M., Hansen, A. K., Hirt, A. M., et al., 2004. Phyllosilicate Preferred Orientation as a Control of Magnetic Fabric: Evidence from Neutron Texture Goniometry and Low and High-Field Magnetic Anisotropy (SE Rhenohercynian Zone of Bohemian Massif). Geological Society, London, Special Publications, 238(1): 361-380. https://doi.org/10.1144/gsl.sp.2004.238.01.19 |
Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173-196. https://doi.org/10.1016/j.earscirev.2004.05.001 |
Ding, L., Zhong, D. L., 1999. Metamorphic Characteristics and Geotectonic Implications of the High-Pressure Granulites from Namjagbarwa, Eastern Tibet. Science in China Series D: Earth Sciences, 42(5): 491-505. https://doi.org/10.1007/bf02875243 |
Dunlop, D. J., Özdemir, Ö., 1997. Rock magnetism: Fundamentals and Frontiers (Vol. 3). Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511612794 |
Geng, Q. R., Pan, G. T., Zheng, L. L., et al., 2006. The Eastern Himalayan Syntaxis: Major Tectonic Domains, Ophiolitic Mélanges and Geologic Evolution. Journal of Asian Earth Sciences, 27(3): 265-285. https://doi.org/10.1016/j.jseaes.2005.03.009 |
Grégoire, V., de Saint Blanquat, M., Nédélec, A., et al., 1995. Shape Anisotropy versus Magnetic Interactions of Magnetite Grains: Experiments and Application to AMS in Granitic Rocks. Geophysical Research Letters, 22(20): 2765-2768. https://doi.org/10.1029/95gl02797 |
Hirt, A. M., Evans, K. F., Engelder, T., 1995. Correlation between Magnetic Anisotropy and Fabric for Devonian Shales on the Appalachian Plateau. Tectonophysics, 247(1/2/3/4): 121-132. https://doi.org/10.1016/0040-1951(94)00176-a |
Holland, T., Blundy, J., 1994. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 116(4): 433-447. https://doi.org/10.1007/bf00310910 |
Hrouda, F., Kahan, Š., 1991. The Magnetic Fabric Relationship between Sedimentary and Basement Nappes in the High Tatra Mountains, N. Slovakia. Journal of Structural Geology, 13(4): 431-442. https://doi.org/10.1016/0191-8141(91)90016-c |
Hrouda, F., Schulmann, K., Suppes, M., et al., 1997. Quantitive Relationship between Low-Field AMS and Phyllosilicate Fabric: A Review. Physics and Chemistry of the Earth, 22(1/2): 153-156. https://doi.org/10.1016/s0079-1946(97)00094-3 |
Jelínek, V., 1981. Characterization of the Magnetic Fabric of Rocks. Tectonophysics, 79(3/4): T63-T67. https://doi.org/10.1016/0040-1951(81)90110-4 |
Ji, S. C., Shao, T. B., Michibayashi, K., et al., 2015. Magnitude and Symmetry of Seismic Anisotropy in Mica- and Amphibole-Bearing Metamorphic Rocks and Implications for Tectonic Interpretation of Seismic Data from the Southeast Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 120(9): 6404-6430. https://doi.org/10.1002/2015jb012209 |
Kitamura, K., 2006. Constraint of Lattice-Preferred Orientation (LPO) on Vp Anisotropy of Amphibole-Rich Rocks. Geophysical Journal International, 165(3): 1058-1065. https://doi.org/10.1111/j.1365-246x.2006.02961.x |
Ko, B., Jung, H., 2015. Crystal Preferred Orientation of an Amphibole Experimentally Deformed by Simple Shear. Nature Communications, 6: 6586. https://doi.org/10.1038/ncomms7586 |
Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61(405): 295-310. https://doi.org/10.1180/minmag.1997.061.405.13 |
Li, Z. Y., Zheng, J. P., Liu, Q. S., et al., 2015. Magnetically Stratified Continental Lower Crust Preserved in the North China Craton. Tectonophysics, 643: 73-79. https://doi.org/10.1016/j.tecto.2014.12.012 |
Li, Z. Y., Zheng, J. P., Moskowitz, B. M., et al., 2017. Magnetic Properties of Serpentinized Peridotites from the Dongbo Ophiolite, SW Tibet: Implications for Suture-Zone Magnetic Anomalies. Journal of Geophysical Research: Solid Earth, 122(7): 4814-4830. https://doi.org/10.1002/2017jb014241 |
Liu, Q. S., Wang, H. C., Zheng, J. P., et al., 2013. Petromagnetic Properties of Granulite-Facies Rocks from the Northern North China Craton: Implications for Magnetic and Evolution of the Continental Lower Crust. Journal of Earth Science, 24(1): 12-28. https://doi.org/10.1007/s12583-013-0314-5 |
Liu, Y., Zhong, D., 1997. Petrology of High-Pressure Granulites from the Eastern Himalayan Syntaxis. Journal of Metamorphic Geology, 15(4): 451-466. https://doi.org/10.1111/j.1525-1314.1997.00033.x |
Liu, Y., Zhong, D. L., 1998. Tectonic Framework of the Eastern Himalayan Syntaxis. Progress in Natural Science, 8(3): 366-370 http://www.cnki.com.cn/Article/CJFDTotal-ZKJY199803015.htm |
Mainprice, D., Hielscher, R., Schaeben, H., 2011. Calculating Anisotropic Physical Properties from Texture Data Using the MTEX Open-Source Package. Geological Society, London, Special Publications, 360(1): 175-192. https://doi.org/10.1144/sp360.10 |
Mainprice, D., Humbert, M., 1994. Methods of Calculating Petrophysical Properties from Lattice Preferred Orientation Data. Surveys in Geophysics, 15(5): 575-592. https://doi.org/10.1007/bf00690175 |
Punturo, R., Mamtani, M. A., Fazio, E., et al., 2017. Seismic and Magnetic Susceptibility Anisotropy of Middle-Lower Continental Crust: Insights for Their Potential Relationship from a Study of Intrusive Rocks from the Serre Massif (Calabria, Southern Italy). Tectonophysics, 712/713: 542-556. https://doi.org/10.1016/j.tecto.2017.06.020 |
Robinson, P., Heidelbach, F., Hirt, A. M., et al., 2006. Crystallographic-Magnetic Correlations in Single-Crystal Haemo-Ilmenite: New Evidence for Lamellar Magnetism. Geophysical Journal International, 165(1): 17-31. https://doi.org/10.1111/j.1365-246x.2006.02849.x |
Schmidt, V., Hirt, A. M., Leiss, B., et al., 2009. Quantitative Correlation of Texture and Magnetic Anisotropy of Compacted Calcite-Muscovite Aggregates. Journal of Structural Geology, 31(10): 1062-1073. https://doi.org/10.1016/j.jsg.2008.11.012 |
Tatham, D. J., Lloyd, G. E., Butler, R. W. H., et al., 2008. Amphibole and Lower Crustal Seismic Properties. Earth and Planetary Science Letters, 267(1/2): 118-128. https://doi.org/10.1016/j.epsl.2007.11.042 |
Tarling, D. H., Hrouda, F., 1993. The Magnetic Anisotropy of Rocks. Chapman & Hall, London. 217 |
Uyeda, S., Fuller, M. D., Belshé, J. C., et al., 1963. Anisotropy of Magnetic Susceptibility of Rocks and Minerals. Journal of Geophysical Research, 68(1): 279-291. https://doi.org/10.1029/jz068i001p00279 |
Wang, H. C., Liu, Q. S., Zhao, W. H., et al., 2015. Magnetic Properties of Archean Gneisses from the Northeastern North China Craton: The Relationship between Magnetism and Metamorphic Grade in the Deep Continental Crust. Geophysical Journal International, 201(1): 486-495. https://doi.org/10.1093/gji/ggv036 |
Xu, H. J., Jin, Z. M., Mason, R., et al., 2009. Magnetic Susceptibility of Ultrahigh Pressure Eclogite: The Role of Retrogression. Tectonophysics, 475(2): 279-290. https://doi.org/10.1016/j.tecto.2009.03.020 |
Xu, H. J., Jin, Z. M., Ou, X. G., 2006. Anisotropy of Magnetic Susceptibility of the Cores from the Mainhole (100-2 000 m) of the Chinese Continental Scientific Drilling: Implications for the Ultrahigh-Pressure (UHP) Metamorphic Rocks. Acta Petrologica Sinica, 22(7): 2081-2088 (in Chinese with English Abstract) |
Xu, Z. Q., Ji, S. C., Cai, Z. H., et al., 2012. Kinematics and Dynamics of the Namche Barwa Syntaxis, Eastern Himalaya: Constraints from Deformation, Fabrics and Geochronology. Gondwana Research, 21(1): 19-36. https://doi.org/10.1016/j.gr.2011.06.010 |
Xue, Z. H., Martelet, G., Lin, W., et al., 2017. Mesozoic Crustal Thickening of the Longmenshan Belt (NE Tibet, China) by Imbrication of Basement Slices: Insights from Structural Analysis, Petrofabric and Magnetic Fabric Studies, and Gravity Modeling. Tectonics, 36(12): 3110-3134. https://doi.org/10.1002/2017tc004754 |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan- Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211 |
Zhang, J. F., Green, H. W. Ⅱ, Bozhilov, K. N., 2006. Rheology of Omphacite at High Temperature and Pressure and Significance of Its Lattice Preferred Orientations. Earth and Planetary Science Letters, 246(3/4): 432-443. https://doi.org/10.1016/j.epsl.2006.04.006 |
Zhang, Z. M., Zhao, G. C., Santosh, M., et al., 2010. Two Stages of Granulite Facies Metamorphism in the Eastern Himalayan Syntaxis, South Tibet: Petrology, Zircon Geochronology and Implications for the Subduction of Neo-Tethys and the Indian Continent beneath Asia. Journal of Metamorphic Geology, 28(7):719-733. https://doi.org/10.1111/j.1525-1314.2010.00885.x |
Zhang, Z. M., Dong, X., Santosh, M., et al., 2012. Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet: Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton. Gondwana Research, 21(1): 123-137. https://doi.org/10.1016/j.gr.2011.02.002 |