Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 3
Jul 2020
Turn off MathJax
Article Contents
Fariba Padyar, Mohammad Rahgoshay, Alexander Tarantola, Marie-Camille Caumon, Seyed Mohammad Pourmoafi. High ƒH2-ƒS2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite. Journal of Earth Science, 2020, 31(3): 523-535. doi: 10.1007/s12583-019-1023-5
Citation: Fariba Padyar, Mohammad Rahgoshay, Alexander Tarantola, Marie-Camille Caumon, Seyed Mohammad Pourmoafi. High ƒH2S2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite. Journal of Earth Science, 2020, 31(3): 523-535. doi: 10.1007/s12583-019-1023-5

High ƒH2S2 Conditions Associated with Sphalerite in Latala Epithermal Base and Precious Metal Deposit, Central Iran: Implications for the Composition and Genesis Conditions of Sphalerite

doi: 10.1007/s12583-019-1023-5
More Information
  • Corresponding author: Fariba Padyar, ORCID:0000-0002-8236-9404.E-mail:padyar@geologist.com
  • Received Date: 20 Dec 2018
  • Accepted Date: 02 Jun 2019
  • Publish Date: 01 Jun 2020
  • This paper presents the properties of fluid inclusions found in sphalerite from Latala epithermal base and precious metal deposit (Central Iran), which is hosted in Cenozoic volcanic- sedimentary host-rocks. The Latala Deposit represents an example of vein type, base metal deposits in the Miduk porphyry copper deposits (PCDs) in southern Urumieh-Dokhtar magmatic belt (UDMB). Mineralization in Latala epithermal base and precious metal vein type formed in 3 stages and sphalerite-quartz veins occur in stages 2 and 3. Stage 2 quartz-sphalerite veins are associated with chalcopyrite and zoned sphalerite, along with quartz+hematite, and Stage 3 quartz-sphalerite veins contain galena+sphalerite+ chalcopyrite and quartz with overgrowth of calcite. Mineralization in Stage 3 occurs as replacement bodies and contains Fe-poor sphalerite without zoning in the outer parts of the deposit. This paper focuses on fluid inclusions in veins bearing sphalerite and quartz. The fluid inclusion homogenization temperatures and salinity in sphalerite (some with typical zoning) range from 144 to 285 ℃ and from 0.2 wt.% to 7.6 wt.% NaCl eq. Sphalerite and fluid inclusions of the Latala base and precious metal deposit formed from relatively low-T and low-salinity solutions. Raman spectroscopy analyses indicate a high percentage of CO2 in the gas phase of fluid inclusions in Fe-poor sphalerites, as expected with melting temperature for CO2 of -56.6 ℃, and significant amounts of H2. Lack of reduced carbon species (methane and lighter hydrocarbons) was confirmed in the petrographic study using UV light and Raman spectroscopy. High amounts of H2 in fluid inclusions of Fe-poor sphalerite can be the result of different intensities of alteration and diffusion processes. The common occurrences of CO2 in fluid inclusions have originated from magma degassing and dissolution of carbonates. The δ34S values for sulfide minerals in galena of sphalerite bearing veins vary between -9.8‰ and -1.0‰, and the δ34S values calculated for H2S are between -7.1‰ and +0.6‰. These values correspond to magmatic sulfur whit possible interaction with wall rocks. Magmatic fluids were successively diluted during cooling and continuous ascent. Secondary boiling would lead to variable amounts of potassic or prophylactic alteration and the hydrogen diffusion into the inclusions hosted in sphalerite of Latala.

     

  • loading
  • Acero, P., Cama, J., Ayora, C., 2007. Sphalerite Dissolution Kinetics in Acidic Environment. Applied Geochemistry, 22(9):1872-1883. https://doi.org/10.1016/j.apgeochem.2007.03.051
    Agard, P., Omrani, J., Jolivet, L., et al., 2011. Zagros Orogeny:A Subduction-Dominated Process. Geological Magazine, 148(5/6):692-725. https://doi.org/10.1017/s001675681100046x
    Akaryali, E., 2016. Geochemical, Fluid Inclusion and Isotopic (O, H and S) Constraints on the Origin of Pb-Zn±Au Vein-Type Mineralizations in the Eastern Pontides Orogenic Belt (NE Turkey). Ore Geology Reviews, 74:1-14. https://doi.org/10.1016/j.oregeorev.2015.11.013
    Alirezaei, S., Modrek, H., Padyar, F., 2010. Chahmessi Epithermal Base and Precious Metal Deposit Kerman Copper Belt, South Iran: Investigation of Genetic Relation with Miduk Porphyry System. ACROFI-III, Novosibirsk, Russia. 6-7
    Atapour, H., 2007. Geochemical Evolution and Metallogeny of Potassic Igneous Rocks of Dehaj-Sarduieh Volcano-Plutonic Belt, Kerman Province, Iran, with Particular Reference to Special Elements: [Dissertation]. Shahid Bahonar University of Kerman, Kerman. 401 (in Persian with English Abstract)
    Azbej, T., Severs, M. J., Rusk, B. G., et al., 2007. In situ Quantitative Analysis of Individual H2O-CO2 Fluid Inclusions by Laser Raman Spectroscopy. Chemical Geology, 237(3/4):255-263. https://doi.org/10.1016/j.chemgeo.2006.06.025
    Baumgartner, R., Fontbote, L., Vennemann, T., 2009. Mineral Zoning and Geochemistry of Epithermal Polymetallic Zn-Pb-Ag-Cu-Bi Mineralization at Cerro de Pasco, Peru. Economic Geology, 103(3):493-537. https://doi.org/10.2113/gsecongeo.103.3.493
    Belissont, R., Boiron, M.-C., Luais, B., et al., 2014. LA-ICP-MS Analyses of Minor and Trace Elements and Bulk Ge Isotopes in Zoned Ge-Rich Sphalerites from the Noailhac-Saint-Salvy Deposit (France):Insights into Incorporation Mechanisms and Ore Deposition Processes. Geochimica et Cosmochimica Acta, 126:518-540. https://doi.org/10.1016/j.gca.2013.10.052
    Berkesi, M., Hidas, K., Guzmics, T., et al., 2009. Detection of Small Amounts of H2O in CO2-Rich Fluid Inclusions Using Raman Spectroscopy. Journal of Raman Spectroscopy, 40(11):1461-1463. https://doi.org/10.1002/jrs.2440
    Bonev, I. K., Kouzmanov, K., 2002. Fluid Inclusions in Sphalerite as Negative Crystals:A Case Study. European Journal of Mineralogy, 14(3):607-620. https://doi.org/10.1127/0935-1221/2002/0014-0607
    Bonnet, J., Mosser-Ruck, R., Caumon, M. C., et al., 2016. Trace Element Distribution (Cu, Ga, Ge, Cd, and Fe) in Sphalerite from the Tennessee MVT Deposits, USA, by Combined EMPA, LA-ICP-MS, Raman Spectroscopy, and Crystallography. The Canadian Mineralogist, 54(5):1261-1284. https://doi.org/10.3749/canmin.1500104
    Bortnikov, N. S., Genkin, A. D., Dobrovolʼskaya, M. G., et al., 1991. The Nature of Chalcopyrite Inclusionsin Sphalerite:Exsolution, Coprecipitation, or "Disease"?. Economic Geology, 86:1070-1082 doi: 10.2113/gsecongeo.86.5.1070
    Bozkaya, G., Bozkaya, O., Banks, D., et al., 2017. Fluid Evolution of Mixed Base-Metal Gold Mineralization in the Tethys Belt: Koru Deposit, Turkey. 14th Binennial Meeting of Society for Geology Applied to Mineral Deposits. Aug. 20-23, 2017, Quebec City, Canada
    Burke, E. A. J., 2001. Raman Microspectrometry of Fluid Inclusions. Lithos, 55(1/2/3/4):139-158. https://doi.org/10.1016/s0024-4937(00)00043-8
    Buzatu, A., Buzgar, N., Damian, G., et al., 2013. The Determination of the Fe Content in Natural Sphalerites by Means of Raman Spectroscopy. Vibrational Spectroscopy, 68:220-224. https://doi.org/10.1016/j.vibspec.2013.08.007
    Catchpole, H., Kouzmanov, K., Fontboté, L., et al., 2011. Fluid Evolution in Zoned Cordilleran Polymetallic Veins-Insights from Microthermometry and LA-ICP-MS of Fluid Inclusions. Chemical Geology, 281(3/4):293-304. https://doi.org/10.1016/j.chemgeo.2010.12.016
    Catchpole, H., Kouzmanov, K., Putlitz, B., et al., 2015. Zoned Base Metal Mineralization in a Porphyry System:Origin and Evolution of Mineralizing Fluids in the Morococha District, Peru. Economic Geology, 110(1):39-71. https://doi.org/10.2113/econgeo.110.1.39
    Caumon, M.-C., Dubessy, J., Robert, P., et al., 2014. Fused-Silica Capillary Capsules (FSCCs) as Reference Synthetic Aqueous Fluid Inclusions to Determine Chlorinity by Raman Spectroscopy. European Journal of Mineralogy, 25(5):755-763. https://doi.org/10.1127/0935-1221/2013/0025-2280
    Caumon, M.-C., Tarantola, A., Mosser-Ruck, R., 2015. Raman Spectra of Water in Fluid Inclusions:I. Effect of Host Mineral Birefringence on Salinity Measurement. Journal of Raman Spectroscopy, 46(10):969-976. https://doi.org/10.1002/jrs.4708
    Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite:A LA-ICPMS Study. Geochimica et Cosmochimica Acta, 73(16):4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
    Cooke, D., Braxton, W. N., Rinne, M., 2015. Metal Transport and Ore Deposition in Porphyry Copper±Gold±Molybdenum Deposits-Contrasting Behaviour between Deep and Hallow Environments. SGA 50th Anniversary Meeting, Aug. 24-27, 2015, Nancy, France. 275-278
    Daliran, F., Bakker, R. J., 2011. Metastable Melting Behavior in Fluid Inclusions in Sphalerite from the Angouran Zn(Pb) Deposit (NW Iran). European Current Research on Fluid Inclusions (ECROFI-XXI). Montanuniversität Leoben
    Di Benedetto, F., Bernardini, G. P., Costagliola, P., et al., 2005, Compositional Zoning in Sphalerite Crystals. American Mineralogist, 90:1384-1392 doi: 10.2138/am.2005.1754
    Dimitrijevic, M. D., Dimitrijevic, M. N., Diordjevic, M., 1971. Geological Map of Shahr-E-Babak (30' Sheet No. 7050, Scale: 1: 100 000). Geological Survey of Iran, Tehran
    Dimitrijevic, M., 1973. Geology of Kerman Region. Institute for Geological and Mining Exploration and Institution of Nuclear and Other Mineral Raw Materials, Beograd-Yugoslavia. Geological Survey of Iran, Report No. Yu/52.334
    Dubessy, J., Pagel, M., Beny, J. M., et al., 1988. Radiolysis Evidenced by H2-O2 and H2-Bearing Fluid Inclusions in Three Uranium Deposits. Geochimica et Cosmochimica Acta, 52(5):1155-1167. https://doi.org/10.1016/0016-7037(88)90269-4
    Dubessy, J., Poty, B., Ramboz, C., 1989. Advances in C-O-H-N-S Fluid Geochemistry Based on Micro-Raman Spectrometric Analysis of Fluid Inclusions. European Journal of Mineralogy, 1(4):517-534. https://doi.org/10.1127/ejm/1/4/0517
    Field, C. W., Zhang, L., Dilles, J. H., et al., 2005. Sulfur and Oxygen Isotopic Record in Sulfate and Sulfide Minerals of Early, Deep, Pre-Main Stage Porphyry Cu-Mo and Late Main Stage Base-Metal Mineral Deposits, Butte District, Montana. Chemical Geology, 215(1/2/3/4):61-93. https://doi.org/10.1016/j.chemgeo.2004.06.049
    Frei, R., 1995. Evolution of Mineralizing Fluid in the Porphyry Copper System of the Skouries Deposit, Northeast Chalkidiki (Greece); Evidence from Combined Pb-Sr and Stable Isotope Data. Economic Geology, 90(4):746-762. https://doi.org/10.2113/gsecongeo.90.4.746
    Frezzotti, M. L., Tecce, F., Casagli, A., 2012. Raman Spectroscopy for Fluid Inclusion Analysis. Journal of Geochemical Exploration, 112:1-20. https://doi.org/10.1016/j.gexplo.2011.09.009
    Hall, D. L., Bodnar, R. J., 1990. Methane in Fluid Inclusions from Granulites:A Product of Hydrogen Diffusion?. Geochimica et Cosmochimica Acta, 54(3):641-651. https://doi.org/10.1016/0016-7037(90)90360-w
    Hall, D. L., Sterner, S. M., 1995. Experimental Diffusion of Hydrogen into Synthetic Fluid Inclusions in Quartz. Journal of Metamorphic Geology, 13(3):345-355. https://doi.org/10.1111/j.1525-1314.1995.tb00224.x
    Hassanzadeh, J., 1993. Metallogenic and Tectonic-Magmatic Events in the SE Sector of the Cenozoic Active Continental Margin of Iran (Shahr E Babak Area, Kerman Province): [Dissertation]. University of California, Los Angeles. 204
    Hedenquist., J. W., Claveria, R. J. R., Villafuerte, G. P., 2001. Types of Sulfide-Rich Epithermal Deposits, and Their Affiliation to Porphyry Systems: Lepanto-Victoria-Far Southeast Deposits, Philippines, as Examples. ProExplo Congreso, April 24-28, Lima, Perú. https://www.researchgate.net/publication/292437674
    Heinrich, C. A., 2005. The Physical and Chemical Evolution of Low- Salinity Magmatic Fluids at the Porphyry to Epithermal Transition:A Thermodynamic Study. Mineralium Deposita, 39(8):864-889. https://doi.org/10.1007/s00126-004-0461-9
    Hope, G. A., Woods, R., Munce, C. G., 2001. Raman Microprobe Mineral Identification. Minerals Engineering, 14(12):1565-1577. https://doi.org/10.1016/s0892-6875(01)00175-3
    Hrstka, T., Dubessy, J., Zachariáš, J., 2011. Bicarbonate-Rich Fluid Inclusions and Hydrogen Diffusion in Quartz from the Libčice Orogenic Gold Deposit, Bohemian Massif. Chemical Geology, 281(3/4):317-332. https://doi.org/10.1016/j.chemgeo.2010.12.018
    Huebner, J. S., 1962. Fluid Inclusion Studies on Sphalerite and Quartz from the Providence Lead and Zinc Deposits, Zacatecas, Mexico: [Dissertation]. Princeton University, Princeton
    Huizenga, J. M., 2001. Thermodynamic Modelling of C-O-H Fluids. Lithos, 55(1/2/3/4):101-114. https://doi.org/10.1016/s0024-4937(00)00040-2
    Huizenga, J. M., 2005. COH, an Excel Spreadsheet for Composition Calculations in the C-O-H Fluid System. Computers & Geosciences, 31(6):797-800. https://doi.org/10.1016/j.cageo.2005.03.003
    Imer, A., Richards, J. P., Muehlenbachs, K., 2016. Hydrothermal Evolution of the Çöpler Porphyry-Epithermal Au Deposit, Erzincan Province, Central Eastern Turkey. Economic Geology, 111(7):1619-1658. https://doi.org/10.2113/econgeo.111.7.1619
    Jafari Rad, A. R., Busch, W., 2011. Porphyry Copper Mineral Prospectivity Mapping Using Interval Valued Fuzzy Sets Topsis Method in Central Iran. Journal of Geographic Information System, 3(4):312-317. https://doi.org/10.4236/jgis.2011.34028
    Jamali, H., Dilek, Y., Daliran, F., et al., 2010. Metallogeny and Tectonic Evolution of the Cenozoic Ahar-Arasbaran Volcanic Belt, Northern Iran. International Geology Review, 52(4/5/6):608-630. https://doi.org/10.1080/00206810903416323
    Keith, M., Haase, K. M., Schwarz-Schampera, U., et al., 2014. Effects of Temperature, Sulfur, and Oxygen Fugacity on the Composition of Sphalerite from Submarine Hydrothermal Vents. Geology, 42(8):699-702. https://doi.org/10.1130/g35655.1
    Kouzmanov, K., Pokrovski, G. S., 2012. Hydrothermal Controls on Metal Distribution in (Cu-Au-Mo) Porphyry Systems. In: Special Publication of the Society of Economic Geologists, 16: 573-618. https://archive-ouverte.unige.ch/unige:27832
    Koziowski, A., Aorecka, E., 1993, Sphalerite Origin in the Olkusz Mining District a Fluid Inclusion Model. Geological Quarterly, 37(2):291-306
    Lepetit, P., Bente, K., Doering, T., et al., 2003. Crystal Chemistry of Fe-Containing Sphalerites. Physics and Chemistry of Minerals, 30(4):185-191. https://doi.org/10.1007/s00269-003-0306-6
    Li, L. F., Zhang, X., Luan, Z. D., et al., 2018. Raman Vibrational Spectral Characteristics and Quantitative Analysis of H2 up to 400 ℃ and 40 MPa. Journal of Raman Spectroscopy, 49(10):1722-1731. https://doi.org/10.1002/jrs.5420
    Li, Y. B., Liu, J. M., 2006. Calculation of Sulfur Isotope Fractionation in Sulfides. Geochimica et Cosmochimica Acta, 70(7):1789-1795. https://doi.org/10.1016/j.gca.2005.12.015
    Mao, J. W., Zhang, J. D., Pirajno, F., et al., 2011. Porphyry Cu-Au-Mo Epithermal Ag-Pb-Zn-Distal Hydrothermal Au Deposits in the Dexing Area, Jiangxi Province, East China-A Linked Ore System. Ore Geology Reviews, 43(1):203-216. https://doi.org/10.1016/j.oregeorev.2011.08.005
    Martz, P., Cathelineau, M., Mercadier, J., et al., 2017. C-O-H-N Fluids Circulations and Graphite Precipitation in Reactivated Hudsonian Shear Zones during Basement Uplift of the Wollaston-Mudjatik Transition Zone:Example of the Cigar Lake U Deposit. Lithos, 294/295:222-245. https://doi.org/10.1016/j.lithos.2017.10.001
    Mavrogenes, J. A., Bodnar, R. J., 1994. Hydrogen Movement into and out of Fluid Inclusions in Quartz:Experimental Evidence and Geologic Implications. Geochimica et Cosmochimica Acta, 58(1):141-148. https://doi.org/10.1016/0016-7037(94)90452-9
    McInnes, B. I. A., Evans, N. J., Fu, F. Q., et al., 2005. Thermal History Analysis of Selected Chilean, Indonesian and Iranian Porphyry Cu-Mo-Au Deposits. In: Porter, T. M., ed., Super Porphyry Copper and Gold Deposits: A Global Perspective. PGC Publishing, Adelaide, Ausstralia. 27-42
    Melcher, F., Oberthür, T., Rammlmair, D., 2006. Geochemical and Mineralogical Distribution of Germanium in the Khusib Springs Cu-Zn-Pb-Ag Sulfide Deposit, Otavi Mountain Land, Namibia. Ore Geology Reviews, 28(1):32-56. https://doi.org/10.1016/j.oregeorev.2005.04.006
    Melfos, V., Vavelidis, M., Christofides, G., et al., 2002. Origin and Evolution of the Tertiary Maronia Porphyry Copper-Molybdenum Deposit, Thrace, Greece. Mineralium Deposita, 37(6/7):648-668. https://doi.org/10.1007/s00126-002-0277-4
    Mernagh, T. P., Trudu, A. G., 1993. A Laser Raman Microprobe Study of some Geologically Important Sulphide Minerals. Chemical Geology, 103(1/2/3/4):113-127. https://doi.org/10.1016/0009-2541(93)90295-t
    Movaghar, Y., Abedian, N., Borna, B., et al., 2011. Final Report on Silver and Gold Prospecting in the Area Latla-City B. Geological Map of Shahrbabak. Geological Survey & Mineral Exploration of Iran, Tehran. 309
    Murciego, A. M., Ayuso, E. A., Sanchez, A., et al., 2010. The Occurrence of Cd and Tl in the Sphalerite from El Losar del Barco Mine (Ávila, Spain): A Potential Environmental Hazard, Resumen SEM.
    Newton, T., 2013. Geochemistry of the Timberville Zn-Pb District, Rockingham County, VA: [Dissertation]. University of Maryland, Maryland
    Oen, I. S., Kager, P., Kieft, C., 1980. Oscillatory Zoning of a Discontinuous Solid-Solution Series:Sphalerite-Stannite. American Mineralogist, 65:1220-1232
    Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5):551-578. https://doi.org/10.2113/gsecongeo.67.5.551
    Ohmoto, H., Rye, R. O., 1979. Isotopes of Sulphur and Carbon. In: Barne, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. Willey Interscience, New York. 509-567
    Osadchii, E. G., Gorbaty, Y. E., 2010. Raman Spectra and Unit Cell Parameters of Sphalerite Solid Solutions (FexZn1-xS). Geochimica et Cosmochimica Acta, 74(2):568-573. https://doi.org/10.1016/j.gca.2009.10.022
    Padyar, F., 2017. The Nature and Evolution of Magmas and Hydrothermal Fluids Associated With Miduk PCD and Latala Vein Type Deposits: [Dissertation]. University of Shahed Beheshti, Tehran. 220
    Padyar, F., Rahgoshay, M., Alirezaei, S., et al., 2017a. Evolution of the Mineralizing Fluids and Possible Genetic Links between Miduk Porphyry Copper and Latala Vein Type Deposits, Kerman Copper Belt, South Iran. Journal of the Geological Society of India, 90(5):558-568. https://doi.org/10.1007/s12594-017-0752-2
    Padyar, F., Rahgoshay, M., Tarantola, A., et al., 2017b. Cathodoluminescence, Microthermometry and Laser Raman Spectroscopy Study of Hydrothermal Quartz in Latala Deposit, Central Iran. Scientific Quarterly Journal of Geosciences, Iran, 26:39-56
    Padyar, F., Rahgoshay, M., Tarantola, S., et al., 2017c. Evidences of Boiling in Fluid Inclusions and Distribution Metals during Mineralization in Latala Epithermal Base and Precious Metal Deposit, Northern Miduk Copper Deposit, Iran. Iranian National Fluid Inclusion Conference. Nov. 16, 2017. University of Zanjan, Zanjan
    Pasteris, J. D., Kuehn, C. A., Bodnar, R. J., 1986. Applications of the Laser Raman Microprobe RAMANOR U-1000 to Hydrothermal Ore Deposits; Carlin as an Example. Economic Geology, 81(4):915-930. https://doi.org/10.2113/gsecongeo.81.4.915
    Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Geological Survey of Western Australia. Geological Survey of Western Australia, Perth. 1250
    Pokrovski, G. S., Borisova, A. Y., Bychkov, A. Y., 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors. Reviews in Mineralogy and Geochemistry, 76(1):165-218. https://doi.org/10.2138/rmg.2013.76.6
    Richards, J. P., 2009. Postsubduction Porphyry Cu-Au and Epithermal Au Deposits:Products of Remelting of Subduction-Modified Lithosphere. Geology, 37(3):247-250. https://doi.org/10.1130/g25451a.1
    Richards, J. P., Kerrich, R., 1993. The Porgera Gold Mine, Papua New Guinea; Magmatic Hydrothermal to Epithermal Evolution of an Alkalic-Type Precious Metal Deposit. Economic Geology, 88(5):1017-1052. https://doi.org/10.2113/gsecongeo.88.5.1017
    Richards, J. P., Razavi, A. M., Spell, T. L., et al., 2018. Magmatic Evolution and Porphyry-Epithermal Mineralization in the Taftan Volcanic Complex, Southeastern Iran. Ore Geology Reviews, 95:258-279. https://doi.org/10.1016/j.oregeorev.2018.02.018
    Rickard, D., Willden, M. Y., Marinder, N. E., et al., 1979. Studies of the Genesis of the Laisvall Sandstone Lead-Zinc Deposit, Sweden. Economic Geology, 74(5):1255-1285. https://doi.org/10.2113/gsecongeo.74.5.1255
    Roedder, E., 1977. Fluid Inclusion Studies of Ore Deposits in the Viburnum Trend, Southeast Missouri. Economic Geology, 72(3):474-479. https://doi.org/10.2113/gsecongeo.72.3.474
    Rye, R. O., 1993. The Evolution of Magmatic Fluids in the Epithermal Environment; The Stable Isotope Perspective. Economic Geology, 88(3):733-752. https://doi.org/10.2113/gsecongeo.88.3.733
    Rye, R. O., 2005. A Review of the Stable-Isotope Geochemistry of Sulfate Minerals in Selected Igneous Environments and Related Hydrothermal Systems. Chemical Geology, 215(1/2/3/4):5-36. https://doi.org/10.1016/j.chemgeo.2004.06.034
    Sakai, H., 1968. Isotopic Properties of Sulfur Compounds in Hydrothermal Processes. Geochemical Journal, 2(1):29-49. https://doi.org/10.2343/geochemj.2.29
    Sawkins, F. J., 1964. Lead-Zinc Ore Deposition in the Light of Fluid Inclusion Studies, Providence Mine, Zacatecas, Mexico. Economic Geology, 59(5):883-919. https://doi.org/10.2113/gsecongeo.59.5.883
    Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1):633-677. https://doi.org/10.2138/rmg.2006.61.12
    Seward, T. M., Barnes, H. L., 1997. Metal Transport by Hydrothermal Fluids. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons Inc., New York. 235-285
    Shahabpour, J., 2007. Island-Arc Affinity of the Central Iranian Volcanic Belt. Journal of Asian Earth Sciences, 30(5/6):652-665. https://doi.org/10.1016/j.jseaes.2007.02.004
    Shang, L. B., Chou, I.-M., Lu, W. J., et al., 2009. Determination of Diffusion Coefficients of Hydrogen in Fused Silica between 296 and 523 K by Raman Spectroscopy and Application of Fused Silica Capillaries in Studying Redox Reactions. Geochimica et Cosmochimica Acta, 73(18):5435-5443. https://doi.org/10.1016/j.gca.2009.06.001
    Shepherd, T. J., Rankin, A. H., Alderton, D. H. M., 1985. A Practical Guide to Fluid Inclusion Studies. Blackie, London. 238
    Shikazono, N., 1973. Sphalerite-Carbonate-Pyrite Assemblage in Hydrothermal Veins and Its Bearing on Limiting the Environment of Their Deposition. Geochemical Journal, 7(2):97-114. https://doi.org/10.2343/geochemj.7.97
    Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105:3-41. https://doi.org/10.2113/gsecongeo.105.1.3
    Sirbescu, M. L. C., Nabelek, P. I., 2003. Dawsonite:An Inclusion Mineral in Quartz from the Tin Mountain Pegmatite, Black Hills, South Dakota. American Mineralogist, 88(7):1055-1059. https://doi.org/10.2138/am-2003-0714
    Tarantola, A., Caumon, M. C., 2015. Raman Spectra of Water in Fluid Inclusions:II. Effect of Negative Pressure on Salinity Measurement. Journal of Raman Spectroscopy, 46(10):977-982. https://doi.org/10.1002/jrs.4668
    Tauson, V. L., Chernyshev, L. V., 1977. Phase Relationships and Structural Features of ZnS-CdS Mixed Crystals. Geochemistry International, 14:11-22
    Voudouris, P., Mavrogonatos, C., Rieck, B., et al., 2018. The Gersdorffite- Bismuthinite-Native Gold Association and the Skarn-Porphyry Mineralization in the Kamariza Mining District, Lavrion, Greece. Minerals, 8(11):531. https://doi.org/10.3390/min8110531
    Voudouris, P., Mavrogonatos, C., Spry, P. G., et al., 2019. Porphyry and Epithermal Deposits in Greece: An Overview, New Discoveries, and Mineralogical Constraints on Their Genesis. Ore Geology Reviews, 107: 654-691. https://doi.org/10.1016/j.oregeorev.2019.03.019
    Wang, G. G., Ni, P., Wang, R. C., et al., 2013. Geological, Fluid Inclusion and Isotopic Studies of the Yinshan Cu-Au-Pb-Zn-Ag Deposit, South China:Implications for Ore Genesis and Exploration. Journal of Asian Earth Sciences, 74:343-360. https://doi.org/10.1016/j.jseaes.2012.11.038
    Williams-Jones, A. E., Heinrich, C. A., 2005. Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits. Economic Geology, 100(7):1287-1312. https://doi.org/10.2113/100.7.1287
    Wopenka, B., Pasteris, J. D., 1986. Limitations to Quantitative Analysis of Fluid Inclusions in Geological Samples by Laser Raman Microprobe Spectroscopy. Applied Spectroscopy, 40(2):144-151. https://doi.org/10.1366/0003702864509592
    Yigit, O., 2009. Mineral Deposits of Turkey in Relation to Tethyan Metallogeny:Implications for Future Mineral Exploration. Economic Geology, 104(1):19-51. https://doi.org/10.2113/gsecongeo.104.1.19
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(500) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return