Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 1
Jan 2020
Turn off MathJax
Article Contents
Yanqiong Huang, Yingde Jiang, Yang Yu, Stephen Collett, Sheng Wang, Tan Shu, Kang Xu. Nd-Hf Isotopic Decoupling of the Silurian-Devonian Granitoids in the Chinese Altai: A Consequence of Crustal Recycling of the Ordovician Accretionary Wedge?. Journal of Earth Science, 2020, 31(1): 102-114. doi: 10.1007/s12583-019-1217-x
Citation: Yanqiong Huang, Yingde Jiang, Yang Yu, Stephen Collett, Sheng Wang, Tan Shu, Kang Xu. Nd-Hf Isotopic Decoupling of the Silurian-Devonian Granitoids in the Chinese Altai: A Consequence of Crustal Recycling of the Ordovician Accretionary Wedge?. Journal of Earth Science, 2020, 31(1): 102-114. doi: 10.1007/s12583-019-1217-x

Nd-Hf Isotopic Decoupling of the Silurian-Devonian Granitoids in the Chinese Altai: A Consequence of Crustal Recycling of the Ordovician Accretionary Wedge?

doi: 10.1007/s12583-019-1217-x
More Information
  • Corresponding author: Yingde Jiang
  • Received Date: 14 Nov 2018
  • Accepted Date: 10 Apr 2019
  • Publish Date: 01 Feb 2020
  • Voluminous Silurian-Devonian granitoids intruded a greywacke-dominated Ordovician accretionary wedge in the Chinese Altai. These granitoids are characterized by significant Nd-Hf isotopic decoupling, the underlying mechanism of which, so far, has been poorly understood. This issue is addressed in this study by the integration of our new and regional published geological and geochemical data. Geological studies indicated a close spatial relationship between the regional anatexis of the Ordovician wedge and the formation of the granitoids, which is characterized by a gradual textural evolution from the partial molten Ordovician wedge sedimentary rocks (the Habahe Group) to the granitoid bodies. Compositionally, these granitoids and the Ordovician Habahe Group rocks displayed close geochemical similarities, in the form of arc-like trace elemental signatures as well as comparable Nd isotopic characteristics. Combined with regional available data, we suggest that the Silurian-Devonian granitoids originated from the immature and chemically primitive Habahe Group rocks. Since Nd and Hf isotopic data for the Habahe Group rocks show significant Nd-Hf isotopic decoupling, we propose that the Silurian-Devonian granitoids inherited the Nd and Hf isotopic signatures from their sources, i.e., the Habahe Group rocks. In other words, the Nd-Hf decoupling in the Habahe Group rocks is the primary causative factor leading to the prevailing Nd-Hf isotopic decoupling of the Silurian-Devonian granitoids in the Chinese Altai.

     

  • loading
  • Badarch, G., Dickson Cunningham, W., Windley, B. F., 2002. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87-110. https://doi.org/10.1016/s1367-9120(02)00017-2
    Bédard, J. H., 2006. A Catalytic Delamination-Driven Model for Coupled Genesis of Archaean Crust and Sub-Continental Lithospheric Mantle. Geochimica et Cosmochimica Acta, 70(5): 1188-1214. https://doi.org/10.1016/j.gca.2005.11.008
    Bennett, V. C., Nutman, A. P., McCulloch, M. T., 1993. Nd Isotopic Evidence for Transient, Highly Depleted Mantle Reservoirs in the Early History of the Earth. Earth and Planetary Science Letters, 119(3): 299-317. https://doi.org/10.1016/0012-821x(93)90140-5
    Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/bf00375292
    Bizimis, M., Sen, G., Salters, V. J. M., 2004. Hf-Nd Isotope Decoupling in the Oceanic Lithosphere: Constraints from Spinel Peridotites from Oahu, Hawaii. Earth and Planetary Science Letters, 217(1/2): 43-58. https://doi.org/10.1016/s0012-821x(03)00598-3
    Bowring, S. A., King, J. E., Housh, T. B., et al., 1989. Neodymium and Lead Isotope Evidence for Enriched Early Archaean Crust in North America. Nature, 340(6230): 222-225. https://doi.org/10.1038/340222a0
    Broussolle, A., Aguilar, C., Sun, M., et al., 2018. Polycyclic Paleozoic Evolution of Accretionary Orogenic Wedge in the Southern Chinese Altai: Evidence from Structural Relationships and U-Pb Geochronology. Lithos, 314-315: 400-424. https://doi.org/10.1016/j.lithos.2018.06.005
    Broussolle, A., Sun, M., Schulmann, K., et al., 2019. Are the Chinese Altai "Terranes" the Result of Juxtaposition of Different Crustal Levels during Late Devonian and Permian Orogenesis?. Gondwana Research, 66: 183-206. https://doi.org/10.1016/j.gr.2018.11.003
    Cai, K. D., Sun, M., Yuan, C., et al., 2010. Geochronological and Geochemical Study of Mafic Dykes from the Northwest Chinese Altai: Implications for Petrogenesis and Tectonic Evolution. Gondwana Research, 18(4): 638-652. https://doi.org/10.1016/j.gr.2010.02.010
    Cai, K. D., Sun, M., Yuan, C., et al., 2011a. Geochronology, Petrogenesis and Tectonic Significance of Peraluminous Granites from the Chinese Altai, NW China. Lithos, 127(1/2): 261-281. https://doi.org/10.1016/j.lithos.2011.09.001
    Cai, K. D., Sun, M., Yuan, C., et al., 2011b. Prolonged Magmatism, Juvenile Nature and Tectonic Evolution of the Chinese Altai, NW China: Evidence from Zircon U-Pb and Hf Isotopic Study of Paleozoic Granitoids. Journal of Asian Earth Sciences, 42(5): 949-968. https://doi.org/10.1016/j.jseaes.2010.11.020
    Castro, A., Gerya, T., Garcia-Casco, A., et al., 2010. Melting Relations of MORB-Sediment Melanges in Underplated Mantle Wedge Plumes; Implications for the Origin of Cordilleran-Type Batholiths. Journal of Petrology, 51(6): 1267-1295. https://doi.org/10.1093/petrology/egq019
    Chase, C. G., Patchett, P. J., 1988. Stored Mafic/Ultramafic Crust and Early Archean Mantle Depletion. Earth and Planetary Science Letters, 91(1/2): 66-72. https://doi.org/10.1016/0012-821x(88)90151-3
    Chen, B., Jahn, B. M., 2002. Geochemical and Isotopic Studies of the Sedimentary and Granitic Rocks of the Altai Orogen of Northwest China and Their Tectonic Implications. Geological Magazine, 139(1): 1-13. https://doi.org/10.1017/s0016756801006100
    Conrad, W. K., Nicholls, I. A., Wall, V. J., 1988. Water-Saturated and -Undersaturated Melting of Metaluminous and Peraluminous Crustal Compositions at 10 Kb: Evidence for the Origin of Silicic Magmas in the Taupo Volcanic Zone, New Zealand, and other Occurrences. Journal of Petrology, 29(4): 765-803. https://doi.org/10.1093/petrology/29.4.765
    Debon, F., le Fort, P., 1983. A Chemical-Mineralogical Classification of Common Plutonic Rocks and Associations. Transactions of the Royal Society of Edinburgh: Earth Sciences, 73(3): 135-149. https://doi.org/10.1017/s0263593300010117
    DePaolo, D. J., Manton, W. I., Grew, E. S., et al., 1982. Sm-Nd, Rb-Sr and U-Th-Pb Systematics of Granulite Facies Rocks from Fyfe Hills, Enderby Land, Antarctica. Nature, 298(5875): 614-618. https://doi.org/10.1038/298614a0
    Dudas, M. J., Schmitt, R. A., Harward, M. E., 1971. Trace Element Partitioning between Volcanic Plagioclase and Dacitic Pyroclastic Matrix. Earth and Planetary Science Letters, 11(1-5): 440-446. https://doi.org/10.1016/0012-821x(71)90206-8
    Farina, F., Stevens, G., Gerdes, A., et al., 2014. Small-Scale Hf Isotopic Variability in the Peninsula Pluton (South Africa): The Processes that Control Inheritance of Source 176Hf/177Hf Diversity in S-Type Granites. Contributions to Mineralogy and Petrology, 168(4): 1065. https://doi.org/10.1007/s00410-014-1065-8
    Galer, S. J. G., Goldstein, S. L., 1991. Early Mantle Differentiation and Its Thermal Consequences. Geochimica et Cosmochimica Acta, 55(1): 227-239. https://doi.org/10.1016/0016-7037(91)90413-y
    Gerdes, A., Montero, P., Bea, F., et al., 2002. Peraluminous Granites Frequently with Mantle-Like Isotope Compositions: The Continental-Type Murzinka and Dzhabyk Batholiths of the Eastern Urals. International Journal of Earth Sciences, 91(1): 3-19. https://doi.org/10.1007/s005310100195
    Harris, N. B. W., Inger, S., 1992. Trace Element Modelling of Pelite-Derived Granites. Contributions to Mineralogy and Petrology, 110(1): 46-56. https://doi.org/10.1007/bf00310881
    Hermann, J., Rubatto, D., 2009. Accessory Phase Control on the Trace Element Signature of Sediment Melts in Subduction Zones. Chemical Geology, 265(3/4): 512-526. https://doi.org/10.1016/j.chemgeo.2009.05.018
    Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part Ⅰ. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1/2): 15-51. https://doi.org/10.1016/s0040-1951(00)00176-1
    Huang, Y. Q., Jiang, Y. D., Collett, S., et al., 2018. Nd Isotope Characteristics of the Chinese Altai Accretionary Wedge: Implications of Syn-Tectonic Granitoids Petrogenesis, 2018 Annual Meeting of Chinese Geoscience Union, Beijing. 341
    Ionov, D. A., Blichert-Toft, J., Weis, D., 2005. Hf Isotope Compositions and HREE Variations in Off-Craton Garnet and Spinel Peridotite Xenoliths from Central Asia. Geochimica et Cosmochimica Acta, 69(9): 2399-2418. https://doi.org/10.1016/j.gca.2004.11.008
    Irving, A. J., Frey, F. A., 1978. Distribution of Trace Elements between Garnet Megacrysts and Host Volcanic Liquids of Kimberlitic to Rhyolitic Composition. Geochimica et Cosmochimica Acta, 42(6): 771-787. https://doi.org/10.1016/0016-7037(78)90092-3
    Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic, In: Barbarin, B., Stephens, W. E., Bonin, B., eds., Transactions of the Royal Society of Edinburgh-Earth Sciences. Geological Society of America, 181-193
    Janoušek, V., Jiang, Y. D., Buriánek, D., et al., 2018. Cambrian-Ordovician Magmatism of the Ikh-Mongol Arc System Exemplified by the Khantaishir Magmatic Complex (Lake Zone, South-Central Mongolia). Gondwana Research, 54: 122-149. https://doi.org/10.1016/j.gr.2017.10.003
    Jiang, Y. D., Schulmann, K., Kröner, A., et al., 2017. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights from Geochemical and U-Pb Zircon Data from the Ordovician Sedimentary Wedge in the Mongolian Altai. Tectonics, 36(11): 2305-2331. https://doi.org/10.1002/2017tc004533
    Jiang, Y. D., Schulmann, K., Sun, M., et al., 2016. Anatexis of Accretionary Wedge, Pacific-Type Magmatism, and Formation of Vertically Stratified Continental Crust in the Altai Orogenic Belt. Tectonics, 35(12): 3095-3118. https://doi.org/10.1002/2016tc004271
    Jiang, Y. D., Schulmann, K., Sun, M., et al., 2019. Structural and Geochronological Constraints on Devonian Suprasubduction Tectonic Switching and Permian Collisional Dynamics in the Chinese Altai, Central Asia. Tectonics, 38(1): 253-280. https://doi.org/10.1029/2018tc005231
    Jiang, Y. D., Štípská, P., Sun, M., et al., 2015. Juxtaposition of Barrovian and Migmatite Domains in the Chinese Altai: A Result of Crustal Thickening Followed by Doming of Partially Molten Lower Crust. Journal of Metamorphic Geology, 33(1): 45-70. https://doi.org/10.1111/jmg.12110
    Jiang, Y. D., Sun, M., Zhao, G. C., et al., 2011. Precambrian Detrital Zircons in the Early Paleozoic Chinese Altai: Their Provenance and Implications for the Crustal Growth of Central Asia. Precambrian Research, 189(1/2): 140-154. https://doi.org/10.1016/j.precamres.2011.05.008
    Jiang, Y. D., Sun, M., Zhao, G., et al., 2010. The 390 Ma High-T Metamorphic Event in the Chinese Altai: A Consequence of Ridge-Subduction?. American Journal of Science, 310(10): 1421-1452. https://doi.org/10.2475/10.2010.08
    Kong, X. Y., Zhang, C., Liu, D. D., et al., 2018. Disequilibrium Partial Melting of Metasediments in Subduction Zones: Evidence from O-Nd-Hf Isotopes and Trace Elements in S-Type Granites of the Chinese Altai. Lithosphere, 11(1): 149-168. https://doi.org/10.1130/l1039.1
    Li, P. F., Sun, M., Rosenbaum, G., et al., 2015. Structural Evolution of the Irtysh Shear Zone (Northwestern China) and Implications for the Amalgamation of Arc Systems in the Central Asian Orogenic Belt. Journal of Structural Geology, 80: 142-156. https://doi.org/10.1016/j.jsg.2015.08.008
    Li, X. H., Liu, D. Y., Sun, M., et al., 2004. Precise Sm-Nd and U-Pb Isotopic Dating of the Supergiant Shizhuyuan Polymetallic Deposit and Its Host Granite, SE China. Geological Magazine, 141(2): 225-231. https://doi.org/10.1017/s0016756803008823
    Li, Z. L., Yang, X. Q., Li, Y. Q., et al., 2014. Late Paleozoic Tectono- Metamorphic Evolution of the Altai Segment of the Central Asian Orogenic Belt: Constraints from Metamorphic P-T Pseudosection and Zircon U-Pb Dating of Ultra-High-Temperature Granulite. Lithos, 204: 83-96. https://doi.org/10.1016/j.lithos.2014.05.022
    Liu, W., Liu, X. J., Xiao, W. J., 2012. Massive Granitoid Production without Massive Continental-Crust Growth in the Chinese Altay: Insight into the Source Rock of Granitoids Using Integrated Zircon U-Pb Age, Hf-Nd-Sr Isotopes and Geochemistry. American Journal of Science, 312(6): 629-684. https://doi.org/10.2475/06.2012.02
    Long, X. P., Sun, M., Yuan, C., et al., 2007. Detrital Zircon Age and Hf Isotopic Studies for Metasedimentary Rocks from the Chinese Altai: Implications for the Early Paleozoic Tectonic Evolution of the Central Asian Orogenic Belt. Tectonics, 26(5): TC5015. https://doi.org/10.1029/2007tc002128
    Long, X. P., Sun, M., Yuan, C., et al., 2008. Early Paleozoic Sedimentary Record of the Chinese Altai: Implications for Its Tectonic Evolution. Sedimentary Geology, 208(3/4): 88-100. https://doi.org/10.1016/j.sedgeo.2008.05.002
    Long, X. P., Yuan, C., Sun, M., et al., 2010. Detrital Zircon Ages and Hf Isotopes of the Early Paleozoic Flysch Sequence in the Chinese Altai, NW China: New Constrains on Depositional Age, Provenance and Tectonic Evolution. Tectonophysics, 480(1-4): 213-231. https://doi.org/10.1016/j.tecto.2009.10.013
    Long, X. P., Yuan, C., Sun, M., et al., 2012. Geochemistry and Nd Isotopic Composition of the Early Paleozoic Flysch Sequence in the Chinese Altai, Central Asia: Evidence for a Northward-Derived Mafic Source and Insight into Nd Model Ages in Accretionary Orogen. Gondwana Research, 22(2): 554-566. https://doi.org/10.1016/j.gr.2011.04.009
    McCulloch, M. T., Bennett, V. C., 1994. Progressive Growth of the Earth's Continental Crust and Depleted Mantle: Geochemical Constraints. Geochimica et Cosmochimica Acta, 58(21): 4717-4738. https://doi.org/10.1016/0016-7037(94)90203-8
    McLennan, S. M., Taylor, S. R., McGregor, V. R., 1984. Geochemistry of Archean Metasedimentary Rocks from West Greenland. Geochimica et Cosmochimica Acta, 48(1): 1-13. https://doi.org/10.1016/0016-7037(84)90345-4
    Montel, J. M., Vielzeuf, D., 1997. Partial Melting of Metagreywackes, Part Ⅱ. Compositions of Minerals and Melts. Contributions to Mineralogy and Petrology, 128(2/3): 176-196. https://doi.org/10.1007/s004100050302
    Patchett, P. J., 1983. Importance of the Lu-Hf Isotopic System in Studies of Planetary Chronology and Chemical Evolution. Geochimica et Cosmochimica Acta, 47(1): 81-91. https://doi.org/10.1016/0016-7037(83)90092-3
    Patchett, P. J., Tatsumoto, M., 1980. Lu-Hf Total-Rock Isochron for the Eucrite Meteorites. Nature, 288(5791): 571-574. https://doi.org/10.1038/288571a0
    Patchett, P. J., White, W. M., Feldmann, H., et al., 1984. Hafnium/Rare Earth Element Fractionation in the Sedimentary System and Crustal Recycling into the Earth's Mantle. Earth and Planetary Science Letters, 69(2): 365-378. https://doi.org/10.1016/0012-821x(84)90195-x
    Patiño Douce, A. E., Beard, J. S., 1995. Dehydration-Melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 Kbar. Journal of Petrology, 36(3): 707-738. https://doi.org/10.1093/petrology/36.3.707
    Pearce, J. A., Kempton, P. D., Nowell, G. M., et al., 1999. Hf-Nd Element and Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systems. Journal of Petrology, 40(11): 1579-1611. https://doi.org/10.1093/petroj/40.11.1579
    Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
    Pettijohn, F. J., Potter, P. E., Siever, R., 1987. Sand and Sandstone. Springer, New York
    Safonova, I. Y., Utsunomiya, A., Kojima, S., et al., 2009. Pacific Superplume-Related Oceanic Basalts Hosted by Accretionary Complexes of Central Asia, Russian Far East and Japan. Gondwana Research, 16(3/4): 587-608. https://doi.org/10.1016/j.gr.2009.02.008
    Salters, V. J. M., Longhi, J., 1999. Trace Element Partitioning during the Initial Stages of Melting beneath Mid-Ocean Ridges. Earth and Planetary Science Letters, 166(1/2): 15-30. https://doi.org/10.1016/s0012-821x(98)00271-4
    Scherer, E. E., Cameron, K. L., Johnson, C. M., et al., 1997. Lu-Hf Geochronology Applied to Dating Cenozoic Events Affecting Lower Crustal Xenoliths from Kilbourne Hole, New Mexico. Chemical Geology, 142(1/2): 63-78. https://doi.org/10.1016/s0009-2541(97)00076-4
    Schmidberger, S. S., Simonetti, A., Francis, D., et al., 2002. Probing Archean Lithosphere Using the Lu-Hf Isotope Systematics of Peridotite Xenoliths from Somerset Island Kimberlites, Canada. Earth and Planetary Science Letters, 197(3/4): 245-259. https://doi.org/10.1016/s0012-821x(02)00491-0
    Schmitz, M. D., Vervoort, J. D., Bowring, S. A., et al., 2004. Decoupling of the Lu-Hf and Sm-Nd Isotope Systems during the Evolution of Granulitic Lower Crust beneath Southern Africa. Geology, 32(5): 405-408. https://doi.org/10.1130/g20241.1
    Şengör, A. M. C., Natal'in, B. A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, 24(1): 263-337. https://doi.org/10.1146/annurev.earth.24.1.263
    Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
    Shi, W. X., Zhang, J. D., Liu, W. G., et al., 2015. Hronology and Petrology Characteristics of Early Devonian Gnessic Granites from East Altai Orogenic Belt. Xinjiang Geology, 33(4): 456-462. https://doi.org/10.3969/j.issn.1000-8845.2015.04.008 (in Chinese with English Abstract)
    Song, P., Tong, Y., Wang, T., et al., 2017. Zircon U-Pb Ages and Genetic Evolution of Devonian Granitic Rocks in the Southeastern Chinese Altai and Its Tectonic Implications: New Evidence for Magmatic Evolution of Calc-Alkaline-High-K Calc-Alkaline-Alkaline Rocks. Acta Geologica Sinica, 91(1): 55-79 (in Chinese with English Abstract) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201701004.htm
    Sun, M., Long, X. P., Cai, K. D., et al., 2009. Early Paleozoic Ridge Subduction in the Chinese Altai: Insight from the Abrupt Change in Zircon Hf Isotopic Compositions. Science in China Series D: Earth Sciences, 52(9): 1345-1358. https://doi.org/10.1007/s11430-009-0110-3
    Sun, M., Yuan, C., Xiao, W. J., et al., 2008. Zircon U-Pb and Hf Isotopic Study of Gneissic Rocks from the Chinese Altai: Progressive Accretionary History in the Early to Middle Palaeozoic. Chemical Geology, 247(3/4): 352-383. https://doi.org/10.1016/j.chemgeo.2007.10.026
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
    Tang, G. J., Wang, Q., Wyman, D. A., et al., 2012. Recycling Oceanic Crust for Continental Crustal Growth: Sr-Nd-Hf Isotope Evidence from Granitoids in the Western Junggar Region, NW China. Lithos, 128-131: 73-83. https://doi.org/10.1016/j.lithos.2011.11.003
    Tong, Y., Wang, T., Hong, D. W., et al., 2007. Ages and Origin of the Early Devonian Granites from the North Part of Chinese Altai Mountains and Its Tectonic Implications. Acta Petrologica Sinica, 23(8): 1933-1944 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200708014
    Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4): 533-556. https://doi.org/10.1016/s0016-7037(98)00274-9
    Vervoort, J. D., Patchett, P. J., 1996. Behavior of Hafnium and Neodymium Isotopes in the Crust: Constraints from Precambrian Crustally Derived Granites. Geochimica et Cosmochimica Acta, 60(19): 3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3
    Vervoort, J. D., Patchett, P. J., Albarède, F., et al., 2000. Hf-Nd Isotopic Evolution of the Lower Crust. Earth and Planetary Science Letters, 181(1/2): 115-129. https://doi.org/10.1016/s0012-821x(00)00170-9
    Vervoort, J. D., Patchett, P. J., Blichert-Toft, J., et al., 1999. Relationships between Lu-Hf and Sm-Nd Isotopic Systems in the Global Sedimentary System. Earth and Planetary Science Letters, 168(1/2): 79-99. https://doi.org/10.1016/s0012-821x(99)00047-3
    Villaseca, C., Barbero, L., Herreros, V., 1998. A Re-Examination of the Typology of Peraluminous Granite Types in Intracontinental Orogenic Belts. Transactions of the Royal Society of Edinburgh: Earth Sciences, 89(2): 113-119. https://doi.org/10.1017/s0263593300007045
    Wang, T., Hong, D. W., Jahn, B. M., et al., 2006. Timing, Petrogenesis, and Setting of Paleozoic Synorogenic Intrusions from the Altai Mountains, Northwest China: Implications for the Tectonic Evolution of an Accretionary Orogen. The Journal of Geology, 114(6): 735-751. https://doi.org/10.1086/507617
    Wang, T., Jahn, B. M., Kovach, V. P., et al., 2009. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt. Lithos, 110(1/2/3/4): 359-372. https://doi.org/10.1016/j.lithos.2009.02.001
    Wei, C. J., Clarke, G., Tian, W., et al., 2007. Transition of Metamorphic Series from the Kyanite- to Andalusite-Types in the Altai Orogen, Xinjiang, China: Evidence from Petrography and Calculated KMnFMASH and KFMASH Phase Relations. Lithos, 96(3/4): 353-374. https://doi.org/10.1016/j.lithos.2006.11.004
    Wilhem, C., Windley, B. F., Stampfli, G. M., 2012. The Altaids of Central Asia: A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews, 113(3/4): 303-341. https://doi.org/10.1016/j.earscirev.2012.04.001
    Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022
    Windley, B. F., Kröner, A., Guo, J. H., et al., 2002. Neoproterozoic to Paleozoic Geology of the Altai Orogen, NW China: New Zircon Age Data and Tectonic Evolution. The Journal of Geology, 110(6): 719-737. https://doi.org/10.1086/342866
    Wittig, N., Baker, J. A., Downes, H., 2007. U-Th-Pb and Lu-Hf Isotopic Constraints on the Evolution of Sub-Continental Lithospheric Mantle, French Massif Central. Geochimica et Cosmochimica Acta, 71(5): 1290-1311. https://doi.org/10.1016/j.gca.2006.11.025
    Xiao, W. J., Huang, B. C., Han, C. M., et al., 2010. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2/3): 253-273. https://doi.org/10.1016/j.gr.2010.01.007
    Xiao, W. J., Windley, B. F., Yuan, C., et al., 2009. Paleozoic Multiple Subduction-Accretion Processes of the Southern Altaids. American Journal of Science, 309(3): 221-270. https://doi.org/10.2475/03.2009.02
    Xiao, W., Windley, B. F., Badarch, G., et al., 2004. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161(3): 339-342. https://doi.org/10.1144/0016-764903-165
    Yu, S. Y., Xu, Y. G., Huang, X. L., et al., 2009. Hf-Nd Isotopic Decoupling in Continental Mantle Lithosphere beneath Northeast China: Effects of Pervasive Mantle Metasomatism. Journal of Asian Earth Sciences, 35(6): 554-570. https://doi.org/10.1016/j.jseaes.2009.04.005
    Yu, Y., Sun, M., Huang, X. L., et al., 2017a. Sr-Nd-Hf-Pb Isotopic Evidence for Modification of the Devonian Lithospheric Mantle beneath the Chinese Altai. Lithos, 284-285: 207-221. https://doi.org/10.1016/j.lithos.2017.04.004
    Yu, Y., Sun, M., Long, X. P., et al., 2017b. Whole-Rock Nd-Hf Isotopic Study of Ⅰ-Type and Peraluminous Granitic Rocks from the Chinese Altai: Constraints on the Nature of the Lower Crust and Tectonic Setting. Gondwana Research, 47: 131-141. https://doi.org/10.1016/j.gr.2016.07.003
    Yuan, C., Sun, M., Xiao, W. J., et al., 2007. Accretionary Orogenesis of the Chinese Altai: Insights from Paleozoic Granitoids. Chemical Geology, 242(1/2): 22-39. https://doi.org/10.1016/j.chemgeo.2007.02.013
    Zhang, C. L., Santosh, M., Zou, H. B., et al., 2012. Revisiting the "Irtish Tectonic Belt": Implications for the Paleozoic Tectonic Evolution of the Altai Orogen. Journal of Asian Earth Sciences, 52: 117-133. https://doi.org/10.1016/j.jseaes.2012.02.016
    Zhang, C., Liu, D. D., Zeng, J. H., et al., 2019. Nd-O-Hf Isotopic Decoupling in S-Type Granites: Implications for Ridge Subduction. Lithos, 332-333: 261-273. https://doi.org/10.1016/j.lithos.2019.03.009
    Zhang, J. J., Wang, T., Tong, Y., et al., 2017. Tracking Deep Ancient Crustal Components by Xenocrystic/Inherited Zircons of Palaeozoic Felsic Igneous Rocks from the Altai-East Junggar Terrane and Adjacent Regions, Western Central Asian Orogenic Belt and Its Tectonic Significance. International Geology Review, 59(16): 2021-2040. https://doi.org/10.1080/00206814.2017.1308841
    Zhang, X., Zhang, H., Ma, Z. L., et al., 2016. A New Model for the Granite-Pegmatite Genetic Relationships in the Kaluan-Azubai-Qiongkuer Pegmatite-Related Ore Fields, the Chinese Altay. Journal of Asian Earth Sciences, 124: 139-155. https://doi.org/10.1016/j.jseaes.2016.04.020
    Zheng, J. H., Chai, F. M., Yang, F. Q., 2016. The 401-409 Ma Xiaodonggou Granitic Intrusion: Implications for Understanding the Devonian Tectonics of the Northwest China Altai Orogen. International Geology Review, 58(5): 540-555. https://doi.org/10.1080/00206814.2015.1095131
    Zou, T. R., Chao, H. Z., Wu, B. Q., 1989. Orogenic and Anorogenic Granitoids in the Altay Mountains of Xinjiang and Their Discrimination Criteria. Acta Geologica Sinica-English Edition, 2(1): 45-64. https://doi.org/10.1111/j.1755-6724.1989.mp2001005.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views(402) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return