Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 1
Jan 2020
Turn off MathJax
Article Contents
Liang Zhao, Daming Wang, Shengbo Chen, Lin Li, Tianyu Zhang. Remote Detection of Hydrocarbon Microseepage in a Loess Covered Area. Journal of Earth Science, 2020, 31(1): 207-214. doi: 10.1007/s12583-019-1235-8
Citation: Liang Zhao, Daming Wang, Shengbo Chen, Lin Li, Tianyu Zhang. Remote Detection of Hydrocarbon Microseepage in a Loess Covered Area. Journal of Earth Science, 2020, 31(1): 207-214. doi: 10.1007/s12583-019-1235-8

Remote Detection of Hydrocarbon Microseepage in a Loess Covered Area

doi: 10.1007/s12583-019-1235-8
More Information
  • Corresponding author: Liang Zhao
  • Received Date: 25 Oct 2018
  • Accepted Date: 12 Apr 2019
  • Publish Date: 01 Jan 2020
  • Hydrocarbon microseepage can result in related near-surface mineral alterations. In this study, we evaluated the potential of detecting these alterations with field measured and satellite acquired hyperspectral data. Fourteen soil samples and reflectance spectra were collected in the Xifeng Oilfield, a loess covered area. Soil samples were analyzed in the laboratory for calcite, dolomite, kaolinite, illite, and mixed-layer illite/smectite content, and we processed reflectance spectra for continuum removal to derive clay and carbonate mineral absorption depth (H). High correlation between absorption depth and mineral content was shown for clay and mineral carbonate with field measured spectra. Based on the result for the field spectra, we proposed and tested a fast index based on the absorption depth of clay and carbonate minerals with a hyperspectral image of the area. The detected hydrocarbon microseepage anomalies matched well with those shown in the geological map.

     

  • loading
  • Almeida-Filho, R., Miranda, F. P., Yamakawa, T., 1999. Remote Detection of a Tonal Anomaly in an Area of Hydrocarbon Microseepage, Tucano Basin, North-Eastern Brazil. International Journal of Remote Sensing, 20(13): 2683-2688. https://doi.org/10.1080/014311699212029
    Chen, S. B., Zhao, Y., Zhao, L., et al., 2017. Hydrocarbon Micro-Seepage Detection by Altered Minerals Mapping from Airborne Hyper-Spectral Data in Xifeng Oilfield, China. Journal of Earth Science, 28(4): 656-665. https://doi.org/10.1007/s12583-015-0604-1
    Ding, X., Wang, Y. P., He, Z. C., 1993. The Application Research of Satellite Remote Sensing to Exploration of Hydrocarbon Alteration Information. Chinese Science Bulletin, 38(17): 1475-1479 (in Chinese) http://cn.bing.com/academic/profile?id=a20c9948e21808946184168046e81ef4&encoded=0&v=paper_preview&mkt=zh-cn
    Dou, W. C., Liu, L. F., Wu, K. J., et al., 2017. Origin and Significance of Secondary Porosity: A Case Study of Upper Triassic Tight Sandstones of Yanchang Formation in Ordos Basin, China. Journal of Petroleum Science and Engineering, 149: 485-496. https://doi.org/10.1016/j.petrol.2016.10.057
    Galvão, L. S., Formaggio, A. R., Couto, E. G., et al., 2008. Relationships between the Mineralogical and Chemical Composition of Tropical Soils and Topography from Hyperspectral Remote Sensing Data. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2): 259-271. https://doi.org/10.1016/j.isprsjprs.2007.09.006
    Gemail, K., Abd-El Rahman, N. M., Ghiath, B. M., et al., 2016. Integration of ASTER and Airborne Geophysical Data for Mineral Exploration and Environmental Mapping: A Case Study, Gabal Dara, North Eastern Desert, Egypt. Environmental Earth Sciences, 75(7): 1-12. https://doi.org/10.1007/s12665-016-5368-0
    He, Z. L., Deng, X. L., Ai, S. M., 2014. Hydrocarbon Micro-Seepage Anomalies Detection Algorithm Based on FPCS for Hyperspectral Remote Sensing Data. Applied Mechanics and Materials, 596: 457-462. https://doi.org/10.4028/www.scientific.net/amm.596.457
    Hörig, B., Kühn, F., Oschütz, F., et al., 2001. HyMap Hyperspectral Remote Sensing to Detect Hydrocarbons. International Journal of Remote Sensing, 22(8): 1413-1422. https://doi.org/10.1080/01431160010013450
    Hou, F., Wang, D., Cai, Y., et al., 2011. The Abnormal Information Extraction of the Hydrocarbon Micro-Seepage Based on the Hyperspectral Image. Proceedings of 2011 19th International Conference on Geoinformatics, Shanghai. 1-4
    Huang, Z. Q., Yao, Z. X., Cheng, M. H., 2014. Lithologic Anomaly Identification of Hydrocarbon Microseepages in Kelasu Fold-and-Thrust Belt, West China Using ASTER Imagery. Geoscience and Remote Sensing Symposium IEEE, Québec. 863-866 https://doi.org/0.1109/igarss.2014.6946561
    Kruse, F. A., Boardman, J. W., Huntington, J. F., 2003. Comparison of Airborne Hyperspectral Data and Eo-1 Hyperion for Mineral Mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1388-1400. https://doi.org/10.1109/tgrs.2003.812908
    Kühn, F., Oppermann, K., Hörig, B., 2004. Hydrocarbon Index-An Algorithm for Hyperspectral Detection of Hydrocarbons. International Journal of Remote Sensing, 25(12): 2467-2473. https://doi.org/10.1080/01431160310001642287
    Lammoglia, T., de Souza Filho, C. R., 2011. Spectroscopic Characterization of Oils Yielded from Brazilian Offshore Basins: Potential Applications of Remote Sensing. Remote Sensing of Environment, 115(10): 2525-2535. https://doi.org/10.1016/j.rse.2011.04.038
    Lammoglia, T., de Souza Filho, C. R., 2013. Unraveling Hydrocarbon Microseepages in Onshore Basins Using Spectral-Spatial Processing of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data. Surveys in Geophysics, 34(3): 349-373. https://doi.org/10.1007/s10712-013-9225-3
    Liu, N., Chen, X., Li, Q. Q., 2014. Study on the Alteration Minerals Caused by Oil and Gas Microseepage by Extracting Endmembers from Hyperion. IEEE International Geoscience and Remote Sensing Symposium, Quebec City. https://doi.org/10.1109/igarss.2014.6946563
    Petrovic, A., Khan, S. D., Thurmond, A. K., 2012. Integrated Hyperspectral Remote Sensing, Geochemical and Isotopic Studies for Understanding Hydrocarbon-Induced Rock Alterations. Marine and Petroleum Geology, 35(1): 292-308. https://doi.org/10.1016/j.marpetgeo.2012.01.004
    Post, J. L., Crawford, S. M., 2014. Uses of Near-Infared Spectra for the Identification of Clay Minerals. Applied Clay Science, 95: 383-387. https://doi.org/10.1016/j.clay.2014.02.010
    Pour, A. B., Hashim, M., Park, Y., et al., 2017. Mapping Alteration Mineral Zones and Lithological Units in Antarctic Regions Using Spectral Bands of ASTER Remote Sensing Data. Geocarto International, 33(12): 1281-1306. https://doi.org/10.1080/10106049.2017.1347207
    Schaepman, M. E., Ustin, S. L., Plaza, A. J., et al., 2009. Earth System Science Related Imaging Spectroscopy—An Assessment. Remote Sensing of Environment, 113: S123-S137. https://doi.org/10.1016/j.rse.2009.03.001
    Shi, P. L., Fu, B. H., Ninomiya, Y., et al., 2012. Multispectral Remote Sensing Mapping for Hydrocarbon Seepage-Induced Lithologic Anomalies in the Kuqa Foreland Basin, South Tian Shan. Journal of Asian Earth Sciences, 46: 70-77. https://doi.org/10.1016/j.jseaes.2011.10.019
    Tian, Q., 2012. Study on Oil-Gas Reservoir Detecting Methods Using Hyperspectral Remote Sensing. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7: 157-162. https://doi.org/10.5194/isprsarchives-xxxix-b7-157-2012
    van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A., et al., 2012. Multi- and Hyperspectral Geologic Remote Sensing: A Review. International Journal of Applied Earth Observation and Geoinformation, 14(1): 112-128. https://doi.org/10.1016/j.jag.2011.08.002
    van der Meer, F. D., 2004. Analysis of Spectral Absorption Features in Hyperspectral Imagery. International Journal of Applied Earth Observation and Geoinformation, 5(1): 55-68. https://doi.org/10.1016/j.jag.2003.09.001
    van der Meer, F. D., van Dijk, P., van der Werff, H. M. A., et al., 2002. Remote Sensing and Petroleum Seepage: A Review and Case Study. Terra Nova, 14(1): 1-17. https://doi.org/10.1046/j.1365-3121.2002.00390.x
    van der Meijde, M., Knox, N. M., Cundill, S. L., et al., 2013. Detection of Hydrocarbons in Clay Soils: A Laboratory Experiment Using Spectroscopy in the Mid- and Thermal Infrared. International Journal of Applied Earth Observation and Geoinformation, 23: 384-388. https://doi.org/10.1016/j.jag.2012.11.001
    Wu, X. Y., Xu, X. M., Wu, C. F., et al., 2014. Responses of Microbial Communities to Light-Hydrocarbon Microseepage and Novel Indicators for Microbial Prospecting of Oil/Gas in the Beihanzhuang Oilfield, Northern Jiangsu, China. Geomicrobiology Journal, 31(8): 697-707. https://doi.org/10.1080/01490451.2013.843619
    Xu, D. Q., Ni, G. Q., Jiang, L. L., et al., 2008. Exploring for Natural Gas Using Reflectance Spectra of Surface Soils. Advances in Space Research, 41(11): 1800-1817. https://doi.org/10.1016/j.asr.2007.05.073
    Xu, N., Hu, Y. X., Lei, B., et al., 2011. Mineral Information Extraction for Hyperspectral Image Based on Modified Spectral Feature Fitting Algorithm. Spectroscopy and Spectral Analysis, 31: 1639-1643 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201106045
    Yang, H., Zhang, J., van der Meer, F., et al., 1998. Geochemistry and Field Spectrometry for Detecting Hydrocarbon Microseepage. Terra Nova, 10(5): 231-235. https://doi.org/10.1046/j.1365-3121.1998.00196.x
    Zhang, C. Y., Qin, Q. M., Chen, L., et al., 2015. Rapid Determination of Coalbed Methane Exploration Target Region Utilizing Hyperspectral Remote Sensing. International Journal of Coal Geology, 150-151: 19-34. https://doi.org/10.1016/j.coal.2015.07.010
    Zhao, H., Zhang, L., Zhang, X., et al., 2015. Hyperspectral Feature Extraction Based on the Reference Spectral Background Removal Method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 1-15. https://doi.org/10.1109/jstars.2015.2401052
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views(249) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return