Arth, J. G., 1976. Behaviour of Trace Elements during Magmatic Processes— A Summary of Theoretical Models and Their Applications. Journal of Research of the U.S. Geological Survey, 4: 41-47 |
Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3): 231-234. https://doi.org/10.1130/g37475.1 |
Bao, Z. W., Zhao, Z. H., 2003. Geochemistry and Tectonic Setting of the Fugang Aluminous A-Type Granite, Guangdong Province, China—A Preliminary Study. Geology-Geochemistry, 31(1): 52-61 (in Chinese with English Abstract) http://en.cnki.com.cn/article_en/cjfdtotal-dzdq200301008.htm |
Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159 |
Bea, F., 1996. Residence of REE, Y, Th and U in Granites and Crustal Protoliths: Implications for the Chemistry of Crustal Melts. Journal of Petrology, 37(3): 521-552. https://doi.org/10.1093/petrology/37.3.521 |
Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2018. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China: Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralisation. Ore Geology Reviews, 92: 588-612. https://doi.org/10.1016/j.oregeorev.2017.12.010 |
Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 |
Chappell, B. W., Bryant, C. J., Wyborn, D., et al., 1998. High- and Low-Temperature Ⅰ-Type Granites. Resource Geology, 48(4): 225-235. https://doi.org/10.1111/j.1751-3928.1998.tb00020.x |
Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x |
Chen, J. Y., Yang, J. H., 2015. Petrogenesis of the Fogang highly Fractionated Ⅰ-Type Granitoids: Constraints from Nb, Ta, Zr and Hf. Acta Petrologica Sinica, 31: 846-854 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201503017 |
Chen, C. H., Lee, C. Y., Shinjo, R., 2008. Was there Jurassic Paleo-Pacific Subduction in South China? Constraints from 40Ar/39Ar Dating, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Mesozoic Basalts. Lithos, 106(1/2): 83-92. https://doi.org/10.1016/j.lithos.2008.06.009 |
Chen, J. F., Jahn, B. M., 1998. Crustal Evolution of Southeastern China: Nd and Sr Isotopic Evidence. Tectonophysics, 284(1/2): 101-133. https://doi.org/10.1016/s0040-1951(97)00186-8 |
Chen, L., Zhao, Z. F., Zheng, Y. F., 2014. Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China. Lithos, 190/191: 220-239. https://doi.org/10.1016/j.lithos.2013.12.011 |
Deering, C. D., Bachmann, O., 2010. Trace Element Indicators of Crystal Accumulation in Silicic Igneous Rocks. Earth and Planetary Science Letters, 297(1/2): 324-331. https://doi.org/10.1016/j.epsl.2010.06.034 |
Deng, J. F., Mo, X. X., Zhao, H. L., et al., 1999. The Yanshanian Lithosphere- Asthenosphere Catastrophe and Metallogenic Environment in East China. Mineral Deposits, 18(4): 309-311 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz199904003 |
Dill, H. G., 2015. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 69: 417-561. https://doi.org/ 10.1016/j.oregeorev.2015.02.022 |
Ding, X., Hu, Y. H., Zhang, H., et al., 2013. Major Nb/Ta Fractionation Recorded in Garnet Amphibolite Facies Metagabbro. The Journal of Geology, 121(3): 255-274. https://doi.org/10.1086/669978 |
Dostal, J., Kontak, D. J., Gerel, O., et al., 2015. Cretaceous Ongonites (Topaz- Bearing Albite-Rich Microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of Extreme Magmatic Fractionation and Pervasive Metasomatic Fluid: Rock Interaction. Lithos, 236/237: 173-189. https://doi.org/10.1016/j.lithos.2015.08.003 |
Frindt, S., Trumbull, R. B., Romer, R. L., 2004. Petrogenesis of the Gross Spitzkoppe Topaz Granite, Central Western Namibia: A Geochemical and Nd-Sr-Pb Isotope Study. Chemical Geology, 206(1/2): 43-71. https://doi.org/10.1016/j.chemgeo.2004.01.015 |
Gao, P., Zheng, Y. F., Zhao, Z. F., 2016. Distinction between S-Type and Peraluminous Ⅰ-Type Granites: Zircon versus Whole-Rock Geochemistry. Lithos, 258/259: 77-91. https://doi.org/10.1016/j.lithos.2016.04.019 |
Gelman, S. E., Deering, C. D., Bachmann, O., et al., 2014. Identifying the Crystal Graveyards Remaining after Large Silicic Eruptions. Earth and Planetary Science Letters, 403: 299-306. https://doi.org/10.1016/j.epsl.2014.07.005 |
Gilder, S. A., Gill, J., Coe, R. S., et al., 1996. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China. Journal of Geophysical Research: Solid Earth, 101(B7): 16137-16154. https://doi.org/10.1029/96jb00662 |
Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-x |
Gu, H. L., Yang, X. Y., Deng, J. H., et al., 2017. Geochemical and Zircon U-Pb Geochronological Study of the Yangshan A-Type Granite: Insights into the Geological Evolution in South Anhui, Eastern Jiangnan Orogen. Lithos, 284/285: 156-170. https://doi.org/10.1016/j.lithos.2017.04.007 |
Guangdong Geological Bureau, 1982. Regional Hydrogeological Survey Report of the Peopleʼs Republic of China (1 : 200 000 Huiyang F-50-(7)). Geological Publishing House, Beijing (in Chinese) |
Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1/2/3/4): 215-230. https://doi.org/10.1016/s0012-821x(98)00152-6 |
Halliday, A. N., Davidson, J. P., Hildreth, W., et al., 1991. Modelling the Petrogenesis of High Rb/Sr Silicic Magmas. Chemical Geology, 92(1/2/3): 107-114. https://doi.org/10.1016/0009-2541(91)90051-r |
Hasterok, D., Chapman, D. S., 2011. Heat Production and Geotherms for the Continental Lithosphere. Earth and Planetary Science Letters, 307(1/2): 59-70. https://doi.org/10.1016/j.epsl.2011.04.034 |
Hawkesworth, C. J., Kemp, A. I. S., 2006. Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution. Chemical Geology, 226(3/4): 144-162. https://doi.org/10.1016/j.chemgeo.2005.09.018 |
Hou, J. C., Cao, M. C., Liu, P. K., 2018. Development and Utilization of Geothermal Energy in China: Current Practices and Future Strategies. Renewable Energy, 125: 401-412. https://doi.org/10.1016/j.renene.2018.02.115 |
Hu, S. B., Wang, J. Y., 1994. Crustal Heat Generation Rate and Mantle Heat Flow in Southeastern China. Science in China (Series B), 24(2): 185-193 (in Chinese) |
Huang, J., Ren, J., Jiang, C., et al., 1980. The Geotectonic Evolution of China. Science Press, Beijing. 1-124 (in Chinese) |
Huang, J., Xiao, Y., Gao, Y., et al., 2012. Nb-Ta Fractionation Induced by Fluid-Rock Interaction in Subduction-Zones: Constraints from UHP Eclogite- and Vein-Hosted Rutile from the Dabie Orogen, Central- Eastern China. Journal of Metamorphic Geology, 30(8): 821-842. https://doi.org/10.1111/j.1525-1314.2012.01000.x |
Huang, L. C., Jiang, S. Y., 2014. Highly Fractionated S-Type Granites from the Giant Dahutang Tungsten Deposit in Jiangnan Orogen, Southeast China: Geochronology, Petrogenesis and Their Relationship with W-Mineralization. Lithos, 202/203: 207-226. https://doi.org/10.1016/j.lithos.2014.05.030 |
Huang, S. P., 2012. Geothermal Energy in China. Nature Climate Change, 2(8): 557-560. https://doi.org/10.1038/nclimate1598 |
Huang, S. P., 2014. Opportunities and Challenges of Geothermal Energy Development in China. Energy of China, 36(9): 4-8, 16 (in Chinese with English Abstract) |
Jahn, B. M., 1974. Mesozoic Thermal Events in Southeast China. Nature, 248(5448): 480-483. https://doi.org/10.1038/248480a0 |
Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xingʼan Mountains in NE China. Lithos, 59(4): 171-198. https://doi.org/10.1016/s0024-4937(01)00066-4 |
Ji, W. B., Lin, W., Faure, M., et al., 2017. Origin of the Late Jurassic to Early Cretaceous Peraluminous Granitoids in the Northeastern Hunan Province (Middle Yangtze Region), South China: Geodynamic Implications for the Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 141: 174-193. https://doi.org/10.1016/j.jseaes.2016.07.005 |
Jiang, S. H., Bagas, L., Hu, P., et al., 2016. Zircon U-Pb Ages and Sr-Nd-Hf Isotopes of the Highly Fractionated Granite with Tetrad REE Patterns in the Shamai Tungsten Deposit in Eastern Inner Mongolia, China: Implications for the Timing of Mineralization and Ore Genesis. Lithos, 261: 322-339. https://doi.org/10.1016/j.lithos.2015.12.021 |
Jiang, X. Y., Luo, J. C., Guo, J., et al., 2018. Geochemistry of I- and A-Type Granites of the Qingyang-Jiuhuashan Complex, Eastern China: Insights into Early Cretaceous Multistage Magmatism. Lithos, 316/317: 278-294. https://doi.org/10.1016/j.lithos.2018.07.025 |
Kelkar, S., WoldeGabriel, G., Rehfeldt, K., 2016. Lessons Learned from the Pioneering Hot Dry Rock Project at Fenton Hill, USA. Geothermics, 63: 5-14. https://doi.org/10.1016/j.geothermics.2015.08.008 |
Kinny, P. D., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341. https://doi.org/10.2113/0530327 |
Kostitsyn, Y. A., 2001. Sources of Rare Metals in Peraluminous Granites: A Review of Geochemical and Isotopic Data. Geochemistry International, 39: 43-59 |
Li, J., Huang, X. L., 2013. Mechanism of Ta-Nb Enrichment and Magmatic Evolution in the Yashan Granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311-4322 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201312017 |
Li, J. H., Zhang, Y. Q., Zhao, G. C., et al., 2017. New Insights into Phanerozoic Tectonics of South China: Early Paleozoic Sinistral and Triassic Dextral Transpression in the East Wuyishan and Chencai Domains, NE Cathaysia. Tectonics, 36(5): 819-853. https://doi.org/10.1002/2016tc004461 |
Li, X. H., 2000. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305. https://doi.org/10.1016/s1367-9120(99)00060-7 |
Li, X. H., 1997. Timing of the Cathaysia Block Formation: Constraints from SHRIMP U-Pb Zircon Geochronology. Episodes, 20(3): 188-192 doi: 10.18814/epiiugs/1997/v20i3/008 |
Li, X. H., Li, W. X., Wang, X. C., et al., 2009. Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China: In situ Zircon Hf-O Isotopic Constraints. Science in China Series D: Earth Sciences, 52(9): 1262-1278. https://doi.org/10.1007/s11430-009-0117-9 |
Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1/2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018 |
Li, Z. L., Zhou, J., Mao, J. R., et al., 2013. Zircon U-Pb Geochronology and Geochemistry of Two Episodes of Granitoids from the Northwestern Zhejiang Province, SE China: Implication for Magmatic Evolution and Tectonic Transition. Lithos, 179: 334-352. https://doi.org/10.1016/j.lithos.2013.07.014 |
Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1 |
Lin, W. J., Gan, H. N., Wang, G. L., et al., 2016. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern Coast of China. Acta Geologica Sinica, 90(8): 2043-2058 (in Chinese with English Abstract) http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201608031.htm |
Lin, W. J., Liu, Z. M., Wang, W. L., et al., 2013. The Assessment of Geothermal Resources Potential of China. Geology in China, 40: 312-321 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201301023.htm |
Lin, L. F., Sun, Z. D., Wang, D., et al., 2017. Radioactive Geochemistry of Mesozoic Granitic from Nanling Region and Southeast Coastal Region and Their Constraints on Lithospheric Thermal Structure. Acta Petrologica et Mineralogica, 36(4): 488-500 (in Chinese with English Abstract) |
Linnen, R. L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochimica et Cosmochimica Acta, 66(18): 3293-3301. https://doi.org/10.1016/s0016-7037(02)00924-9 |
Liu, S. A., Li, S. G., He, Y. S., et al., 2010. Geochemical Contrasts between Early Cretaceous Ore-Bearing and Ore-Barren High-Mg Adakites in Central-Eastern China: Implications for Petrogenesis and Cu-Au Mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178. https://doi.org/10.1016/j.gca.2010.09.003 |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
London, D., Evensen, J. M., 2002. Beryllium in Silicic Magmas and the Origin of Beryl-Bearing Pegmatites. Reviews in Mineralogy and Geochemistry, 50(1): 445-486. https://doi.org/10.2138/rmg.2002.50.11 |
Lu, S. M., 2018. A Global Review of Enhanced Geothermal System (EGS). Renewable and Sustainable Energy Reviews, 81: 2902-2921. https://doi.org/10.1016/j.rser.2017.06.097 |
Lund, J. W., 2008. Development and Utilization of Geothermal Resources. Episodes, 31(1): 140-147 doi: 10.18814/epiiugs/2008/v31i1/019 |
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 |
Mao, J. R., Li, Z. L., Ye, H. M., 2014. Mesozoic Tectono-Magmatic Activities in South China: Retrospect and Prospect. Science China Earth Sciences, 57(12): 2853-2877. https://doi.org/10.1007/s11430-014-5006-1 |
Mao, X. P., Wang, X. W., Li, K. W., et al., 2018. Sources of Heat and Control Factors in Geothermal Field. Earth Science, 43(11): 4256-4266 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dqkx201811039 |
McLaren, S., Sandiford, M., Powell, R., et al., 2006. Palaeozoic Intraplate Crustal Anatexis in the Mount Painter Province, South Australia: Timing, Thermal Budgets and the Role of Crustal Heat Production. Journal of Petrology, 47(12): 2281-2302. https://doi.org/10.1093/petrology/egl044 |
Merino, E., Villaseca, C., Orejana, D., et al., 2013. Gahnite, Chrysoberyl and Beryl Co-occurrence as Accessory Minerals in a Highly Evolved Peraluminous Pluton: The Belvís de Monroy Leucogranite (Cáceres, Spain). Lithos, 179: 137-156. https://doi.org/10.1016/j.lithos.2013.08.004 |
Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19: 120-125 doi: 10.18814/epiiugs/1996/v19i4/005 |
Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 |
Peccerillo, A., Taylor, S. R., 1976. Rare Earth Elements in East Carpathian Volcanic Rocks. Earth and Planetary Science Letters, 32(2): 121-126. https://doi.org/10.1016/0012-821x(76)90050-9 |
Pérez-Soba, C., Villaseca, C., 2010. Petrogenesis of highly Fractionated Ⅰ-Type Peraluminous Granites: La Pedriza Pluton (Spanish Central System). Geologica Acta, 8: 131-149 |
Qi, C. S., Deng, X. G., Li, W. X., et al., 2007. Origin of the Darongshan- Shiwandashan S-Type Granitoid Belt from Southeastern Guangxi: Geochemical and Sr-Nd-Hf Isotopic Constraints. Acta Petrologica Sinica, 2: 403-412 (in Chinese with English Abstract) |
Regenauer-Lieb, K., Yuen, D. A., Qi, S. H., et al., 2015. Foreword: Toward a Quantitative Understanding of the Frontier in Geothermal Energy. Journal of Earth Science, 26(1): 1-4. https://doi.org/10.1007/s12583-015-0601-4 |
Ren, J. S., 1990. On the Geotectonics of Southern China. Acta Geologica Sinica, 65(4): 275-288 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-DZXW199102000.htm |
Rybach, L., 1976. Radioactive Heat Production in Rocks and Its Relation to other Petrophysical Parameters. Pure and Applied Geophysics, 114(2): 309-317. https://doi.org/10.1007/bf00878955 |
Rybach, L., 1988. Determination of Heat Production Rate. In: Haenel, R., Rybach, L., Stegena, L., eds., Handbook of Terrestrial Heat Flow Density. Kluwer Academic Publishers, Holland. 125-142 |
Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Sun, T., 2006. A New Map Showing the Distribution of Granites in South China and Its Explanatory Notes. Geological Bulletin of China, 25(3): 332-335 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200603002 |
Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 |
Tao, J. H., Li, W. X., Li, X. H., et al., 2013. Petrogenesis of Early Yanshanian Highly Evolved Granites in the Longyuanba Area, Southern Jiangxi Province: Evidence from Zircon U-Pb Dating, Hf-O Isotope and Whole-Rock Geochemistry. Science China Earth Sciences, 56(6): 922-939. https://doi.org/10.1007/s11430-013-4593-6 |
Teixeira, R. J. S., Neiva, A. M. R., Silva, P. B., et al., 2011. Combined U-Pb Geochronology and Lu-Hf Isotope Systematics by LAM-ICPMS of Zircons from Granites and Metasedimentary Rocks of Carrazeda de Ansiães and Sabugal Areas, Portugal, to Constrain Granite Sources. Lithos, 125(1/2): 321-334. https://doi.org/10.1016/j.lithos.2011.02.015 |
Wang, D. Z., 2004. The Study of Granite Rocks in South China: Looking back and forward. Geological Journal of China Universities, 10(3): 305-314 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/019263654603013515 |
Wang, D. Z., Shen, W. Z., 2003. The Genesis of Granites and Crustal Evolution in Southeast of China. Earth Science Frontiers, 10(3): 209-220 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e28395adde5a608e7b8ac859c4be6e59 |
Wang, D. Z., Zhou, X. M., 2002. Crustal Evolution and Petrogenesis of Late Mesozoic Granitic Volcanic-Intrusive Complexes in Southeastern China. Science Press, Beijing (in Chinese) |
Wang, G. L., Zhang, W., Liang, J. Y., et al., 2017. Evaluation of Geothermal Resources Potential in China. Acta Geoscientica Sinica, 38(4): 448-459 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201203010 |
Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- and A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478: 164-182. https://doi.org/10.1016/j.chemgeo.2017.09.033 |
Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206/207: 147-163. https://doi.org/10.1016/j.lithos.2014.07.026 |
Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 |
Wang, Y. J., Wu, C. M., Zhang, A. M., et al., 2012. Kwangsian and Indosinian Reworking of the Eastern South China Block: Constraints on Zircon U-Pb Geochronology and Metamorphism of Amphibolites and Granulites. Lithos, 150: 227-242. https://doi.org/10.1016/j.lithos.2012.04.022 |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202 |
Whalen, J. B., Jenner, G. A., Longstaffe, F. J., et al., 1996. Geochemical and Isotopic (O, Nd, Pb and Sr) Constraints on A-Type Granite Petrogenesis Based on the Topsails Igneous Suite, Newfoundland Appalachians. Journal of Petrology, 37(6): 1463-1489. https://doi.org/10.1093/petrology/37.6.1463 |
Wu, F. Y., Ji, W. Q., Sun, D. H., et al., 2012. Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Mesozoic Granites in Southern Anhui Province, China. Lithos, 150: 6-25. https://doi.org/10.1016/j.lithos.2012.03.020 |
Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 |
Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2): 103-119. https://doi.org/10.1016/j.epsl.2005.02.019 |
Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201-1219. https://doi.org/10.1007/s11430-016-5139-1 |
Xi, Y. F., Zhao, Y. B., David, A. Y., et al., 2018. Geothermal Structure Revealed by Curie Isothermal Surface under Guangdong Province, China. Journal of Earth Science. https://doi.org/10.1007/s12583-017-0967-6 |
Xie, Y. S., Tan, K. X., Tang, Z. P., et al., 2014. Tectono-Magmatic Activization and Fractal Dynamics of Ore-Forming of Hydrothermal Uranium Deposits in South China. Acta Geologica Sinica—English Edition, 88(Suppl. 2): 1695-1696. https://doi.org/10.1111/1755-6724.12385_47 |
Xu, T. F., Hu, Z. X., Li, S. T., et al., 2018. Enhanced Geothermal System: International Research Progress and Research Status of China. Acta Geologica Sinica, 92: 1936-1947 (in Chinese with English Abstract) |
Yan, C. L., Shu, L. S., Michel, F., et al., 2017. Early Paleozoic Intracontinental Orogeny in the Yunkai Domain, South China Block: New Insights from Field Observations, Zircon U-Pb Geochronological and Geochemical Investigations. Lithos, 268/271: 320-333. https://doi.org/10.1016/j.lithos.2016.11.013 |
Yan, J., Liu, J. M., Li, Q. Z., et al., 2015. In situ Zircon Hf-O Isotopic Analyses of Late Mesozoic Magmatic Rocks in the Lower Yangtze River Belt, Central Eastern China: Implications for Petrogenesis and Geodynamic Evolution. Lithos, 227: 57-76. https://doi.org/10.1016/j.lithos.2015.03.013 |
Yang, J. H., Liu, L., Liu, J., 2017. Current Progresses and Prospect for Genesis of Extensive Mesozoic Granitoid and Granitoid-Related Multi-Metal Mineralization in Southern China. Acta Mineralogica Sinica, 37: 791-800 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201706014.htm |
Yang, X. Y., Sun, W. D., 2018. Jurassic and Cretaceous (Yanshannian) Tectonics, Magmatism and Metallogenesis in South China: Preface. International Geology Review, 60(11/12/13/14): 1321-1325. https://doi.org/10.1080/00206814.2018.1479891 |
Yuan, Y. S., Ma, Y. S., Hu, S. B., et al., 2006. Present-Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49(4): 1005-1014. https://doi.org/10.1002/cjg2.922 |
Yurimoto, H., Duke, E. F., Papike, J. J., et al., 1990. Are Discontinuous Chondrite-Normalized REE Patterns in Pegmatitic Granite Systems the Results of Monazite Fractionation?. Geochimica et Cosmochimica Acta, 54(7): 2141-2145. https://doi.org/10.1016/0016-7037(90)90277-r |
Zen, E. A., 1986. Aluminum Enrichment in Silicate Melts by Fractional Crystallization: Some Mineralogic and Petrographic Constraints. Journal of Petrology, 27(5): 1095-1117. https://doi.org/10.1093/petrology/27.5.1095 |
Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China Earth Sciences, 56(11): 1804-1828. https://doi.org/10.1007/s11430-013-4679-1 |
Zhang, L., Chen, Z. Y., Li, S. R., et al., 2017. Isotope Geochronology, Geochemistry, and Mineral Chemistry of the U-Bearing and Barren Granites from the Zhuguangshan Complex, South China: Implications for Petrogenesis and Uranium Mineralization. Ore Geology Reviews, 91: 1040-1065. https://doi.org/10.1016/j.oregeorev.2017.07.017 |
Zhang, L., Chen, Z. Y., Li, X. F., et al., 2018. Zircon U-Pb Geochronology and Geochemistry of Granites in the Zhuguangshan Complex, South China: Implications for Uranium Mineralization. Lithos, 308/309: 19-33. https://doi.org/10.1016/j.lithos.2018.02.029 |
Zhang, X. B., Hu, Q. H., 2018. Development of Geothermal Resources in China: A Review. Journal of Earth Science, 29(2): 452-467. https://doi.org/10.1007/s12583-018-0838-9 |
Zhao, Z. H., Akimasa, M., Shabani, M. B., 1992. Tetrad Effects of Rare-Earth Elements in Rare-Metal Granites. Acta Geochimica, 3: 221-233 (in Chinese with English Abstract) |
Zhao, J. L., Qiu, J. S., Liu, L., et al., 2016. The Late Cretaceous I- and A-Type Granite Association of Southeast China: Implications for the Origin and Evolution of Post-Collisional Extensional Magmatism. Lithos, 240-243: 16-33. https://doi.org/10.1016/j.lithos.2015.10.018 |
Zhao, P., Wang, J. Y., Wang, J. A., et al., 1995. Characteristics of Heat Production in SE China. Acta Petrologica Sinica, 11(3): 292-303 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/jam.13462 |
Zhao, Z. F., Zheng, Y. F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science in China Series D: Earth Sciences, 52(9): 1295-1318. https://doi.org/10.1007/s11430-009-0134-8 |
Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189-1206. https://doi.org/10.1016/j.gr.2012.10.001 |
Zheng, Y. F., Zhang, L. F., McClelland, W. C., et al., 2012. Processes in Continental Collision Zones: Preface. Lithos, 136-139: 1-9. https://doi.org/10.1016/j.lithos.2011.11.020 |
Zhou, X. M., 2003. My Thinking about Granite Geneses of South China. Geological Journal of China Universities, 9: 556-565 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304009 |
Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7 |
Zhou, X. M., Sun, T., Shen, W. Z., et al. 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29: 26-33 doi: 10.18814/epiiugs/2006/v29i1/004 |
Zhou, Z. M., Ma, C. Q., Xie, C. F., et al., 2016. Genesis of Highly Fractionated Ⅰ-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 27(3): 444-460. https://doi.org/10.1007/s12583-016-0677-3 |
Zhu, J. L., Hu, K. Y., Lu, X. L., et al., 2015. A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects. Energy, 93: 466-483. https://doi.org/10.1016/j.energy.2015.08.098 |