Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 1
Jan 2020
Turn off MathJax
Article Contents
Zhicai Xiao, Shuai Wang, Shihua Qi, Jian Kuang, Min Zhang, Feng Tian, Yongjie Han. Petrogenesis, Tectonic Evolution and Geothermal Implications of Mesozoic Granites in the Huangshadong Geothermal Field, South China. Journal of Earth Science, 2020, 31(1): 141-158. doi: 10.1007/s12583-019-1242-9
Citation: Zhicai Xiao, Shuai Wang, Shihua Qi, Jian Kuang, Min Zhang, Feng Tian, Yongjie Han. Petrogenesis, Tectonic Evolution and Geothermal Implications of Mesozoic Granites in the Huangshadong Geothermal Field, South China. Journal of Earth Science, 2020, 31(1): 141-158. doi: 10.1007/s12583-019-1242-9

Petrogenesis, Tectonic Evolution and Geothermal Implications of Mesozoic Granites in the Huangshadong Geothermal Field, South China

doi: 10.1007/s12583-019-1242-9
More Information
  • Corresponding author: Shihua Qi
  • Received Date: 03 Jan 2019
  • Accepted Date: 16 May 2019
  • Publish Date: 01 Feb 2020
  • Mesozoic multi-stage tectono-magmatic events produced widely distributed granitoids in the South China Block. Huangshadong (HSD) is located in south-eastern South China Block, where closely spaced hot springs accompany outcrops of Mesozoic granites. New data on whole-rock geochemistry, zircon U-Pb geochronology, and zircon Lu-Hf isotopes are presented, to study the petrogenesis and tectonic evolution of the granites, and to explore the relationship between granites and geothermal anomalies. Zircon U-Pb isotopes display three periods of granites in the HSD area:Indosinian (ca. 253 Ma, G4) muscovite-bearing monzonitic granite, early Yanshanian (ca. 175-155 Ma, G5 and G3) monzonitic granite and granodiorite, and late Yanshanian (ca. 140 Ma, G1 and G2) biotite monzonitic granite. In petrogenetic type, granites of the three periods are Ⅰ-type granite. Among them, G1, G2, G3, and G4 are characterized by high fractionation, with high values of SiO2, alkalis, Ga/Al, and Rb/Sr, and depletion in Sr, Ba, Zr, Nb, Ti, REEs, with low (La/Yb)N, Nb/Ta, and Zr/Hf ratios and negative Eu anomalies. In terms of tectonic setting, 253 Ma G4 may be the product of partial melting of the ancient lower crust under post-orogenic extensional tectonics, as the closure of the Paleo-Tethys Ocean resulted in an intracontinental orogeny. At 175 Ma, the subduction of the Pacific Plate became the dominant tectonic system, and low-angle subduction of the Paleo-Pacific Plate facilitated partial melting of the subducted oceanic crust and basement to generate the hornblende-bearing Ⅰ-type granodiorite. As the dip angle of the subducting plate increased, the continental arc tectonic setting was transformed to back-arc extension, inducing intense partial melting of the lower crust at ca. 158 Ma and resulting in the most frequent granitic magmatic activity in the South China hinterland. When slab foundering occurred at ca. 140 Ma, underplating of mantle-derived magmas caused melting of the continental crust, generating extensive highly fractionated granites in HSD. Combining the granitic evolution of HSD and adjacent areas and radioactive heat production rates, it is suggested that highly fractionated granites are connected to the enrichments in U and Th with magma evolution. The high radioactive heat derived from the Yanshanian granites is an important part of the crustal heat, which contributes significantly to the terrestrial heat flow. Drilling ZK8 reveals deep, ca. 140 Ma granite, which implies the heat source of the geothermal anomalies is mainly the concealed Yanshanian granites, combining the granite distribution on the surface.

     

  • loading
  • Arth, J. G., 1976. Behaviour of Trace Elements during Magmatic Processes— A Summary of Theoretical Models and Their Applications. Journal of Research of the U.S. Geological Survey, 4: 41-47
    Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites: A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3): 231-234. https://doi.org/10.1130/g37475.1
    Bao, Z. W., Zhao, Z. H., 2003. Geochemistry and Tectonic Setting of the Fugang Aluminous A-Type Granite, Guangdong Province, China—A Preliminary Study. Geology-Geochemistry, 31(1): 52-61 (in Chinese with English Abstract) http://en.cnki.com.cn/article_en/cjfdtotal-dzdq200301008.htm
    Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3): 323-333. https://doi.org/10.1007/s004100050159
    Bea, F., 1996. Residence of REE, Y, Th and U in Granites and Crustal Protoliths: Implications for the Chemistry of Crustal Melts. Journal of Petrology, 37(3): 521-552. https://doi.org/10.1093/petrology/37.3.521
    Bonnetti, C., Liu, X. D., Mercadier, J., et al., 2018. The Genesis of Granite-Related Hydrothermal Uranium Deposits in the Xiazhuang and Zhuguang Ore Fields, North Guangdong Province, SE China: Insights from Mineralogical, Trace Elements and U-Pb Isotopes Signatures of the U Mineralisation. Ore Geology Reviews, 92: 588-612. https://doi.org/10.1016/j.oregeorev.2017.12.010
    Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
    Chappell, B. W., Bryant, C. J., Wyborn, D., et al., 1998. High- and Low-Temperature Ⅰ-Type Granites. Resource Geology, 48(4): 225-235. https://doi.org/10.1111/j.1751-3928.1998.tb00020.x
    Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
    Chen, J. Y., Yang, J. H., 2015. Petrogenesis of the Fogang highly Fractionated Ⅰ-Type Granitoids: Constraints from Nb, Ta, Zr and Hf. Acta Petrologica Sinica, 31: 846-854 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201503017
    Chen, C. H., Lee, C. Y., Shinjo, R., 2008. Was there Jurassic Paleo-Pacific Subduction in South China? Constraints from 40Ar/39Ar Dating, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Mesozoic Basalts. Lithos, 106(1/2): 83-92. https://doi.org/10.1016/j.lithos.2008.06.009
    Chen, J. F., Jahn, B. M., 1998. Crustal Evolution of Southeastern China: Nd and Sr Isotopic Evidence. Tectonophysics, 284(1/2): 101-133. https://doi.org/10.1016/s0040-1951(97)00186-8
    Chen, L., Zhao, Z. F., Zheng, Y. F., 2014. Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China. Lithos, 190/191: 220-239. https://doi.org/10.1016/j.lithos.2013.12.011
    Deering, C. D., Bachmann, O., 2010. Trace Element Indicators of Crystal Accumulation in Silicic Igneous Rocks. Earth and Planetary Science Letters, 297(1/2): 324-331. https://doi.org/10.1016/j.epsl.2010.06.034
    Deng, J. F., Mo, X. X., Zhao, H. L., et al., 1999. The Yanshanian Lithosphere- Asthenosphere Catastrophe and Metallogenic Environment in East China. Mineral Deposits, 18(4): 309-311 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz199904003
    Dill, H. G., 2015. Pegmatites and Aplites: Their Genetic and Applied Ore Geology. Ore Geology Reviews, 69: 417-561. https://doi.org/ 10.1016/j.oregeorev.2015.02.022
    Ding, X., Hu, Y. H., Zhang, H., et al., 2013. Major Nb/Ta Fractionation Recorded in Garnet Amphibolite Facies Metagabbro. The Journal of Geology, 121(3): 255-274. https://doi.org/10.1086/669978
    Dostal, J., Kontak, D. J., Gerel, O., et al., 2015. Cretaceous Ongonites (Topaz- Bearing Albite-Rich Microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of Extreme Magmatic Fractionation and Pervasive Metasomatic Fluid: Rock Interaction. Lithos, 236/237: 173-189. https://doi.org/10.1016/j.lithos.2015.08.003
    Frindt, S., Trumbull, R. B., Romer, R. L., 2004. Petrogenesis of the Gross Spitzkoppe Topaz Granite, Central Western Namibia: A Geochemical and Nd-Sr-Pb Isotope Study. Chemical Geology, 206(1/2): 43-71. https://doi.org/10.1016/j.chemgeo.2004.01.015
    Gao, P., Zheng, Y. F., Zhao, Z. F., 2016. Distinction between S-Type and Peraluminous Ⅰ-Type Granites: Zircon versus Whole-Rock Geochemistry. Lithos, 258/259: 77-91. https://doi.org/10.1016/j.lithos.2016.04.019
    Gelman, S. E., Deering, C. D., Bachmann, O., et al., 2014. Identifying the Crystal Graveyards Remaining after Large Silicic Eruptions. Earth and Planetary Science Letters, 403: 299-306. https://doi.org/10.1016/j.epsl.2014.07.005
    Gilder, S. A., Gill, J., Coe, R. S., et al., 1996. Isotopic and Paleomagnetic Constraints on the Mesozoic Tectonic Evolution of South China. Journal of Geophysical Research: Solid Earth, 101(B7): 16137-16154. https://doi.org/10.1029/96jb00662
    Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3/4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-x
    Gu, H. L., Yang, X. Y., Deng, J. H., et al., 2017. Geochemical and Zircon U-Pb Geochronological Study of the Yangshan A-Type Granite: Insights into the Geological Evolution in South Anhui, Eastern Jiangnan Orogen. Lithos, 284/285: 156-170. https://doi.org/10.1016/j.lithos.2017.04.007
    Guangdong Geological Bureau, 1982. Regional Hydrogeological Survey Report of the Peopleʼs Republic of China (1 : 200 000 Huiyang F-50-(7)). Geological Publishing House, Beijing (in Chinese)
    Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1/2/3/4): 215-230. https://doi.org/10.1016/s0012-821x(98)00152-6
    Halliday, A. N., Davidson, J. P., Hildreth, W., et al., 1991. Modelling the Petrogenesis of High Rb/Sr Silicic Magmas. Chemical Geology, 92(1/2/3): 107-114. https://doi.org/10.1016/0009-2541(91)90051-r
    Hasterok, D., Chapman, D. S., 2011. Heat Production and Geotherms for the Continental Lithosphere. Earth and Planetary Science Letters, 307(1/2): 59-70. https://doi.org/10.1016/j.epsl.2011.04.034
    Hawkesworth, C. J., Kemp, A. I. S., 2006. Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution. Chemical Geology, 226(3/4): 144-162. https://doi.org/10.1016/j.chemgeo.2005.09.018
    Hou, J. C., Cao, M. C., Liu, P. K., 2018. Development and Utilization of Geothermal Energy in China: Current Practices and Future Strategies. Renewable Energy, 125: 401-412. https://doi.org/10.1016/j.renene.2018.02.115
    Hu, S. B., Wang, J. Y., 1994. Crustal Heat Generation Rate and Mantle Heat Flow in Southeastern China. Science in China (Series B), 24(2): 185-193 (in Chinese)
    Huang, J., Ren, J., Jiang, C., et al., 1980. The Geotectonic Evolution of China. Science Press, Beijing. 1-124 (in Chinese)
    Huang, J., Xiao, Y., Gao, Y., et al., 2012. Nb-Ta Fractionation Induced by Fluid-Rock Interaction in Subduction-Zones: Constraints from UHP Eclogite- and Vein-Hosted Rutile from the Dabie Orogen, Central- Eastern China. Journal of Metamorphic Geology, 30(8): 821-842. https://doi.org/10.1111/j.1525-1314.2012.01000.x
    Huang, L. C., Jiang, S. Y., 2014. Highly Fractionated S-Type Granites from the Giant Dahutang Tungsten Deposit in Jiangnan Orogen, Southeast China: Geochronology, Petrogenesis and Their Relationship with W-Mineralization. Lithos, 202/203: 207-226. https://doi.org/10.1016/j.lithos.2014.05.030
    Huang, S. P., 2012. Geothermal Energy in China. Nature Climate Change, 2(8): 557-560. https://doi.org/10.1038/nclimate1598
    Huang, S. P., 2014. Opportunities and Challenges of Geothermal Energy Development in China. Energy of China, 36(9): 4-8, 16 (in Chinese with English Abstract)
    Jahn, B. M., 1974. Mesozoic Thermal Events in Southeast China. Nature, 248(5448): 480-483. https://doi.org/10.1038/248480a0
    Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xingʼan Mountains in NE China. Lithos, 59(4): 171-198. https://doi.org/10.1016/s0024-4937(01)00066-4
    Ji, W. B., Lin, W., Faure, M., et al., 2017. Origin of the Late Jurassic to Early Cretaceous Peraluminous Granitoids in the Northeastern Hunan Province (Middle Yangtze Region), South China: Geodynamic Implications for the Paleo-Pacific Subduction. Journal of Asian Earth Sciences, 141: 174-193. https://doi.org/10.1016/j.jseaes.2016.07.005
    Jiang, S. H., Bagas, L., Hu, P., et al., 2016. Zircon U-Pb Ages and Sr-Nd-Hf Isotopes of the Highly Fractionated Granite with Tetrad REE Patterns in the Shamai Tungsten Deposit in Eastern Inner Mongolia, China: Implications for the Timing of Mineralization and Ore Genesis. Lithos, 261: 322-339. https://doi.org/10.1016/j.lithos.2015.12.021
    Jiang, X. Y., Luo, J. C., Guo, J., et al., 2018. Geochemistry of I- and A-Type Granites of the Qingyang-Jiuhuashan Complex, Eastern China: Insights into Early Cretaceous Multistage Magmatism. Lithos, 316/317: 278-294. https://doi.org/10.1016/j.lithos.2018.07.025
    Kelkar, S., WoldeGabriel, G., Rehfeldt, K., 2016. Lessons Learned from the Pioneering Hot Dry Rock Project at Fenton Hill, USA. Geothermics, 63: 5-14. https://doi.org/10.1016/j.geothermics.2015.08.008
    Kinny, P. D., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341. https://doi.org/10.2113/0530327
    Kostitsyn, Y. A., 2001. Sources of Rare Metals in Peraluminous Granites: A Review of Geochemical and Isotopic Data. Geochemistry International, 39: 43-59
    Li, J., Huang, X. L., 2013. Mechanism of Ta-Nb Enrichment and Magmatic Evolution in the Yashan Granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311-4322 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201312017
    Li, J. H., Zhang, Y. Q., Zhao, G. C., et al., 2017. New Insights into Phanerozoic Tectonics of South China: Early Paleozoic Sinistral and Triassic Dextral Transpression in the East Wuyishan and Chencai Domains, NE Cathaysia. Tectonics, 36(5): 819-853. https://doi.org/10.1002/2016tc004461
    Li, X. H., 2000. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305. https://doi.org/10.1016/s1367-9120(99)00060-7
    Li, X. H., 1997. Timing of the Cathaysia Block Formation: Constraints from SHRIMP U-Pb Zircon Geochronology. Episodes, 20(3): 188-192 doi: 10.18814/epiiugs/1997/v20i3/008
    Li, X. H., Li, W. X., Wang, X. C., et al., 2009. Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China: In situ Zircon Hf-O Isotopic Constraints. Science in China Series D: Earth Sciences, 52(9): 1262-1278. https://doi.org/10.1007/s11430-009-0117-9
    Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?. Lithos, 96(1/2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018
    Li, Z. L., Zhou, J., Mao, J. R., et al., 2013. Zircon U-Pb Geochronology and Geochemistry of Two Episodes of Granitoids from the Northwestern Zhejiang Province, SE China: Implication for Magmatic Evolution and Tectonic Transition. Lithos, 179: 334-352. https://doi.org/10.1016/j.lithos.2013.07.014
    Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
    Lin, W. J., Gan, H. N., Wang, G. L., et al., 2016. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern Coast of China. Acta Geologica Sinica, 90(8): 2043-2058 (in Chinese with English Abstract) http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201608031.htm
    Lin, W. J., Liu, Z. M., Wang, W. L., et al., 2013. The Assessment of Geothermal Resources Potential of China. Geology in China, 40: 312-321 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201301023.htm
    Lin, L. F., Sun, Z. D., Wang, D., et al., 2017. Radioactive Geochemistry of Mesozoic Granitic from Nanling Region and Southeast Coastal Region and Their Constraints on Lithospheric Thermal Structure. Acta Petrologica et Mineralogica, 36(4): 488-500 (in Chinese with English Abstract)
    Linnen, R. L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochimica et Cosmochimica Acta, 66(18): 3293-3301. https://doi.org/10.1016/s0016-7037(02)00924-9
    Liu, S. A., Li, S. G., He, Y. S., et al., 2010. Geochemical Contrasts between Early Cretaceous Ore-Bearing and Ore-Barren High-Mg Adakites in Central-Eastern China: Implications for Petrogenesis and Cu-Au Mineralization. Geochimica et Cosmochimica Acta, 74(24): 7160-7178. https://doi.org/10.1016/j.gca.2010.09.003
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    London, D., Evensen, J. M., 2002. Beryllium in Silicic Magmas and the Origin of Beryl-Bearing Pegmatites. Reviews in Mineralogy and Geochemistry, 50(1): 445-486. https://doi.org/10.2138/rmg.2002.50.11
    Lu, S. M., 2018. A Global Review of Enhanced Geothermal System (EGS). Renewable and Sustainable Energy Reviews, 81: 2902-2921. https://doi.org/10.1016/j.rser.2017.06.097
    Lund, J. W., 2008. Development and Utilization of Geothermal Resources. Episodes, 31(1): 140-147 doi: 10.18814/epiiugs/2008/v31i1/019
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
    Mao, J. R., Li, Z. L., Ye, H. M., 2014. Mesozoic Tectono-Magmatic Activities in South China: Retrospect and Prospect. Science China Earth Sciences, 57(12): 2853-2877. https://doi.org/10.1007/s11430-014-5006-1
    Mao, X. P., Wang, X. W., Li, K. W., et al., 2018. Sources of Heat and Control Factors in Geothermal Field. Earth Science, 43(11): 4256-4266 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dqkx201811039
    McLaren, S., Sandiford, M., Powell, R., et al., 2006. Palaeozoic Intraplate Crustal Anatexis in the Mount Painter Province, South Australia: Timing, Thermal Budgets and the Role of Crustal Heat Production. Journal of Petrology, 47(12): 2281-2302. https://doi.org/10.1093/petrology/egl044
    Merino, E., Villaseca, C., Orejana, D., et al., 2013. Gahnite, Chrysoberyl and Beryl Co-occurrence as Accessory Minerals in a Highly Evolved Peraluminous Pluton: The Belvís de Monroy Leucogranite (Cáceres, Spain). Lithos, 179: 137-156. https://doi.org/10.1016/j.lithos.2013.08.004
    Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19: 120-125 doi: 10.18814/epiiugs/1996/v19i4/005
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
    Peccerillo, A., Taylor, S. R., 1976. Rare Earth Elements in East Carpathian Volcanic Rocks. Earth and Planetary Science Letters, 32(2): 121-126. https://doi.org/10.1016/0012-821x(76)90050-9
    Pérez-Soba, C., Villaseca, C., 2010. Petrogenesis of highly Fractionated Ⅰ-Type Peraluminous Granites: La Pedriza Pluton (Spanish Central System). Geologica Acta, 8: 131-149
    Qi, C. S., Deng, X. G., Li, W. X., et al., 2007. Origin of the Darongshan- Shiwandashan S-Type Granitoid Belt from Southeastern Guangxi: Geochemical and Sr-Nd-Hf Isotopic Constraints. Acta Petrologica Sinica, 2: 403-412 (in Chinese with English Abstract)
    Regenauer-Lieb, K., Yuen, D. A., Qi, S. H., et al., 2015. Foreword: Toward a Quantitative Understanding of the Frontier in Geothermal Energy. Journal of Earth Science, 26(1): 1-4. https://doi.org/10.1007/s12583-015-0601-4
    Ren, J. S., 1990. On the Geotectonics of Southern China. Acta Geologica Sinica, 65(4): 275-288 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-DZXW199102000.htm
    Rybach, L., 1976. Radioactive Heat Production in Rocks and Its Relation to other Petrophysical Parameters. Pure and Applied Geophysics, 114(2): 309-317. https://doi.org/10.1007/bf00878955
    Rybach, L., 1988. Determination of Heat Production Rate. In: Haenel, R., Rybach, L., Stegena, L., eds., Handbook of Terrestrial Heat Flow Density. Kluwer Academic Publishers, Holland. 125-142
    Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sun, T., 2006. A New Map Showing the Distribution of Granites in South China and Its Explanatory Notes. Geological Bulletin of China, 25(3): 332-335 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200603002
    Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
    Tao, J. H., Li, W. X., Li, X. H., et al., 2013. Petrogenesis of Early Yanshanian Highly Evolved Granites in the Longyuanba Area, Southern Jiangxi Province: Evidence from Zircon U-Pb Dating, Hf-O Isotope and Whole-Rock Geochemistry. Science China Earth Sciences, 56(6): 922-939. https://doi.org/10.1007/s11430-013-4593-6
    Teixeira, R. J. S., Neiva, A. M. R., Silva, P. B., et al., 2011. Combined U-Pb Geochronology and Lu-Hf Isotope Systematics by LAM-ICPMS of Zircons from Granites and Metasedimentary Rocks of Carrazeda de Ansiães and Sabugal Areas, Portugal, to Constrain Granite Sources. Lithos, 125(1/2): 321-334. https://doi.org/10.1016/j.lithos.2011.02.015
    Wang, D. Z., 2004. The Study of Granite Rocks in South China: Looking back and forward. Geological Journal of China Universities, 10(3): 305-314 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/019263654603013515
    Wang, D. Z., Shen, W. Z., 2003. The Genesis of Granites and Crustal Evolution in Southeast of China. Earth Science Frontiers, 10(3): 209-220 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e28395adde5a608e7b8ac859c4be6e59
    Wang, D. Z., Zhou, X. M., 2002. Crustal Evolution and Petrogenesis of Late Mesozoic Granitic Volcanic-Intrusive Complexes in Southeastern China. Science Press, Beijing (in Chinese)
    Wang, G. L., Zhang, W., Liang, J. Y., et al., 2017. Evaluation of Geothermal Resources Potential in China. Acta Geoscientica Sinica, 38(4): 448-459 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ghqzyyhj201203010
    Wang, L. X., Ma, C. Q., Zhang, C., et al., 2018. Halogen Geochemistry of I- and A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 478: 164-182. https://doi.org/10.1016/j.chemgeo.2017.09.033
    Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206/207: 147-163. https://doi.org/10.1016/j.lithos.2014.07.026
    Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
    Wang, Y. J., Wu, C. M., Zhang, A. M., et al., 2012. Kwangsian and Indosinian Reworking of the Eastern South China Block: Constraints on Zircon U-Pb Geochronology and Metamorphism of Amphibolites and Granulites. Lithos, 150: 227-242. https://doi.org/10.1016/j.lithos.2012.04.022
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
    Whalen, J. B., Jenner, G. A., Longstaffe, F. J., et al., 1996. Geochemical and Isotopic (O, Nd, Pb and Sr) Constraints on A-Type Granite Petrogenesis Based on the Topsails Igneous Suite, Newfoundland Appalachians. Journal of Petrology, 37(6): 1463-1489. https://doi.org/10.1093/petrology/37.6.1463
    Wu, F. Y., Ji, W. Q., Sun, D. H., et al., 2012. Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Mesozoic Granites in Southern Anhui Province, China. Lithos, 150: 6-25. https://doi.org/10.1016/j.lithos.2012.03.020
    Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001
    Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2): 103-119. https://doi.org/10.1016/j.epsl.2005.02.019
    Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 60(7): 1201-1219. https://doi.org/10.1007/s11430-016-5139-1
    Xi, Y. F., Zhao, Y. B., David, A. Y., et al., 2018. Geothermal Structure Revealed by Curie Isothermal Surface under Guangdong Province, China. Journal of Earth Science. https://doi.org/10.1007/s12583-017-0967-6
    Xie, Y. S., Tan, K. X., Tang, Z. P., et al., 2014. Tectono-Magmatic Activization and Fractal Dynamics of Ore-Forming of Hydrothermal Uranium Deposits in South China. Acta Geologica Sinica—English Edition, 88(Suppl. 2): 1695-1696. https://doi.org/10.1111/1755-6724.12385_47
    Xu, T. F., Hu, Z. X., Li, S. T., et al., 2018. Enhanced Geothermal System: International Research Progress and Research Status of China. Acta Geologica Sinica, 92: 1936-1947 (in Chinese with English Abstract)
    Yan, C. L., Shu, L. S., Michel, F., et al., 2017. Early Paleozoic Intracontinental Orogeny in the Yunkai Domain, South China Block: New Insights from Field Observations, Zircon U-Pb Geochronological and Geochemical Investigations. Lithos, 268/271: 320-333. https://doi.org/10.1016/j.lithos.2016.11.013
    Yan, J., Liu, J. M., Li, Q. Z., et al., 2015. In situ Zircon Hf-O Isotopic Analyses of Late Mesozoic Magmatic Rocks in the Lower Yangtze River Belt, Central Eastern China: Implications for Petrogenesis and Geodynamic Evolution. Lithos, 227: 57-76. https://doi.org/10.1016/j.lithos.2015.03.013
    Yang, J. H., Liu, L., Liu, J., 2017. Current Progresses and Prospect for Genesis of Extensive Mesozoic Granitoid and Granitoid-Related Multi-Metal Mineralization in Southern China. Acta Mineralogica Sinica, 37: 791-800 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201706014.htm
    Yang, X. Y., Sun, W. D., 2018. Jurassic and Cretaceous (Yanshannian) Tectonics, Magmatism and Metallogenesis in South China: Preface. International Geology Review, 60(11/12/13/14): 1321-1325. https://doi.org/10.1080/00206814.2018.1479891
    Yuan, Y. S., Ma, Y. S., Hu, S. B., et al., 2006. Present-Day Geothermal Characteristics in South China. Chinese Journal of Geophysics, 49(4): 1005-1014. https://doi.org/10.1002/cjg2.922
    Yurimoto, H., Duke, E. F., Papike, J. J., et al., 1990. Are Discontinuous Chondrite-Normalized REE Patterns in Pegmatitic Granite Systems the Results of Monazite Fractionation?. Geochimica et Cosmochimica Acta, 54(7): 2141-2145. https://doi.org/10.1016/0016-7037(90)90277-r
    Zen, E. A., 1986. Aluminum Enrichment in Silicate Melts by Fractional Crystallization: Some Mineralogic and Petrographic Constraints. Journal of Petrology, 27(5): 1095-1117. https://doi.org/10.1093/petrology/27.5.1095
    Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China Earth Sciences, 56(11): 1804-1828. https://doi.org/10.1007/s11430-013-4679-1
    Zhang, L., Chen, Z. Y., Li, S. R., et al., 2017. Isotope Geochronology, Geochemistry, and Mineral Chemistry of the U-Bearing and Barren Granites from the Zhuguangshan Complex, South China: Implications for Petrogenesis and Uranium Mineralization. Ore Geology Reviews, 91: 1040-1065. https://doi.org/10.1016/j.oregeorev.2017.07.017
    Zhang, L., Chen, Z. Y., Li, X. F., et al., 2018. Zircon U-Pb Geochronology and Geochemistry of Granites in the Zhuguangshan Complex, South China: Implications for Uranium Mineralization. Lithos, 308/309: 19-33. https://doi.org/10.1016/j.lithos.2018.02.029
    Zhang, X. B., Hu, Q. H., 2018. Development of Geothermal Resources in China: A Review. Journal of Earth Science, 29(2): 452-467. https://doi.org/10.1007/s12583-018-0838-9
    Zhao, Z. H., Akimasa, M., Shabani, M. B., 1992. Tetrad Effects of Rare-Earth Elements in Rare-Metal Granites. Acta Geochimica, 3: 221-233 (in Chinese with English Abstract)
    Zhao, J. L., Qiu, J. S., Liu, L., et al., 2016. The Late Cretaceous I- and A-Type Granite Association of Southeast China: Implications for the Origin and Evolution of Post-Collisional Extensional Magmatism. Lithos, 240-243: 16-33. https://doi.org/10.1016/j.lithos.2015.10.018
    Zhao, P., Wang, J. Y., Wang, J. A., et al., 1995. Characteristics of Heat Production in SE China. Acta Petrologica Sinica, 11(3): 292-303 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/jam.13462
    Zhao, Z. F., Zheng, Y. F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science in China Series D: Earth Sciences, 52(9): 1295-1318. https://doi.org/10.1007/s11430-009-0134-8
    Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189-1206. https://doi.org/10.1016/j.gr.2012.10.001
    Zheng, Y. F., Zhang, L. F., McClelland, W. C., et al., 2012. Processes in Continental Collision Zones: Preface. Lithos, 136-139: 1-9. https://doi.org/10.1016/j.lithos.2011.11.020
    Zhou, X. M., 2003. My Thinking about Granite Geneses of South China. Geological Journal of China Universities, 9: 556-565 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200304009
    Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3/4): 269-287. https://doi.org/10.1016/s0040-1951(00)00120-7
    Zhou, X. M., Sun, T., Shen, W. Z., et al. 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29: 26-33 doi: 10.18814/epiiugs/2006/v29i1/004
    Zhou, Z. M., Ma, C. Q., Xie, C. F., et al., 2016. Genesis of Highly Fractionated Ⅰ-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 27(3): 444-460. https://doi.org/10.1007/s12583-016-0677-3
    Zhu, J. L., Hu, K. Y., Lu, X. L., et al., 2015. A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects. Energy, 93: 466-483. https://doi.org/10.1016/j.energy.2015.08.098
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views(492) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return