Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 3
Jul 2020
Turn off MathJax
Article Contents
Girish Kumar Mayachar, Subhasish Ghosh. Fluid Inclusion Characteristics of Tungsten Mineralization in the Agargaon Area of Sakoli Fold Belt, Central India. Journal of Earth Science, 2020, 31(3): 559-570. doi: 10.1007/s12583-019-1271-4
Citation: Girish Kumar Mayachar, Subhasish Ghosh. Fluid Inclusion Characteristics of Tungsten Mineralization in the Agargaon Area of Sakoli Fold Belt, Central India. Journal of Earth Science, 2020, 31(3): 559-570. doi: 10.1007/s12583-019-1271-4

Fluid Inclusion Characteristics of Tungsten Mineralization in the Agargaon Area of Sakoli Fold Belt, Central India

doi: 10.1007/s12583-019-1271-4
More Information
  • Corresponding author: Girish Kumar Mayachar, ORCID:0000-0001-6223-3035, girishgeosu@gmailcom
  • Received Date: 25 Dec 2018
  • Accepted Date: 20 Sep 2019
  • Publish Date: 01 Mar 2020
  • The Lower to Middle Proterozoic Sakoli fold belt in Central India forms a triangular belt with significant mineralization of strategic minerals. The Sakoli fold belt comprises metasediments, felsic and mafic volcanics with metabasalts bounded by the gneissic-migmatitic terrain. The last pulses of granitic activity in the form of quartz lenses intrude the metasediments and are associated with tungsten mineralization. The metasediments are intruded by the quartz veins and tourmaline breccias trending 60°N to 65°E and 60°S to 65°W and are parallel to the regional structural foliations. The tungsten mineralization in this area is restricted to tourmaline-quartz mica greisens and quartz veins. The NE-SW trending foliated contact zones of chlorite mica schist and porphyritic granite/gneisses have served as easy channels for the mineralizing vapours and solutions to percolate, which formed ore bearing greisens and quartz veins. This mineralization is erratic and manifested by sparse and sporadic disseminations of wolframite and scheelite associated with minor amount of molybdenite and chalcopyrite. The fluid inclusion microthermometry on mineralized quartz veins and quartz-tourmaline veins reveals the existence of a metamorphogenic aqueous-gaseous (H2O-CO2+NaCl) fluid that underwent phase separation and gave rise to gaseous (CO2) inclusion. The salinity of tungsten mineralizations varies from low to high (1.32 wt.% to 40.44 wt.% NaCl eq.). The estimated P-T range of tungsten mineralization varies from 1.2 to 2.2 kbar at 280 to 390 ℃. Raman spectroscopy reveals that the fluid inclusions mainly contain H2O and CO2 with rarely H2S and CH4. Stable isotopic data reveal that the sulfur isotope fractions from the deposits δ34S ranging from +3.1‰ to +3.35‰, suggesting the deep crustal source for the sulfur, which can be further interpreted as a single (magmatic) supply of sulfur during magmatic-hydrothermal mineralization. The studies reveal the presence of chlorides such as FeCl2/MgCl2 and CaCl2, indicating the involvement of chloride complexes in transportation of tungsten to the fluid system and the evolution of the ore-forming fluids by mixing or immiscibility of high-temperature, high-salinity magmatic fluids and low-temperature, low-salinity fluids in hydrothermal system, and also representing magmatic-hydrothermal interactions contributed wolframite and scheelite with minor amount of molybdenite and chalcopyrite.

     

  • loading
  • Archer, D. G., 1992. Thermodynamic Properties of the NaCl+H2O System. Ⅱ. Thermodynamic Properties of NaCl(aq), NaCl⋅2H2(cr), and Phase Equilibria. Journal of Physical and Chemical Reference Data, 21(4):793-829. https://doi.org/10.1063/1.555915
    Bakker, R. J., 2003. Package FLUIDS 1. Computer Programs for Analysis of Fluid Inclusion Data and for Modelling Bulk Fluid Properties. Chemical Geology, 194(1/2/3):3-23. https://doi.org/10.1016/s0009-2541(02)00268-1 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20c760049a3f451f28721556f22583db
    Bandyopadhyay, B. K., 1992. Sedex Type Copper and Zinc Deposits in the Proterozoic Sakoli Group, Nagpur and Bhandara Districts, Central India. In: Sarkar, S. C., ed., Metallogeny Related to Tectonics of the Proterozoic Mobile Belts. A. A. Balkema, Rotterdam. 53-101
    Beaudoin, G., Taylor, B. E., Rumble, D. III, et al., 1994. Variations in the Sulfur Isotope Composition of Troilite from the Cañon Diablo Iron Meteorite. Geochimica et Cosmochimica Acta, 58(19):4253-4255. https://doi.org/10.1016/0016-7037(94)90277-1
    Bhoskar, K. G., 1998. Genetic Modeling in Relation to the Geochemical Parameters of Distribution of Tungsten and Associated Metals in Submarine Basic Volcanic Domain-A Case History of Ranbori-Bhaonri Prospects. Gondwana Geological Magzine, 13(2):13-21
    Bhoskar, K. G., Choudhury, A., Padhi, R. N., 2004. Conceptual Modeling of Tungsten Mineralization in the Sakoli Basin, Central India. In: Rai, K. L., Patel, S. C., eds., Precambrian Crustal Evolution and Metallogenesis with Special References to Central India. Recent Researches in Geology, 17: 108-119
    Bhoskar, K. G., Roy, A., Saha, A. K., 2001. Crustal Evolution and Ore Genesis-The Central Indian Scenario. Geol. Surv. Ind. Spl. Pub., 64:199-207
    Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions. Geochimica et Cosmochimica Acta, 57(3):683-684. https://doi.org/10.1016/0016-7037(93)90378-a doi: 10.1016/0016-7037(93)90378-A
    Bodnar, R. J., 1983. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids. Economic Geology, 78(3):535-542. https://doi.org/10.2113/gsecongeo.78.3.535
    Bodnar, R. J., Binns, P. R., Hall, D. L., 1989. Synthetic Fluid Inclusions-Ⅵ. Quantitative Evaluation of the Decrepitation Behaviour of Fluid Inclusions in Quartz at One Atmosphere Confining Pressure. Journal of Metamorphic Geology, 7(2):229-242. https://doi.org/10.1111/j.1525-1314.1989.tb00586.x
    Brown, P. E., Lamb, W. M., 1989. P-V-T Properties of Fluids in the System H2O±CO2±NaCl:New Graphical Presentations and Implications for Fluid Inclusion Studies. Geochimica et Cosmochimica Acta, 53(6):1209-1221. https://doi.org/10.1016/0016-7037(89)90057-4
    Chi, G. X., Lu, H. Z., 2008. Validation and Representation of Fluid Inclusion Microthermometric Data Using the Fluid Inclusion Assemblage (FIA) Concept. Acta Petrologica Sinica, 24:1945-1953 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200809001
    Collins, P. L. F., 1979. Gas Hydrates in CO2-Bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity. Economic Geology, 74(6):1435-1444. https://doi.org/10.2113/gsecongeo.74.6.1435
    de Groot, P. A., 2004. Handbook of Stable Isotope Analytical Techniques, Vol. 1. Elsevier, Amsterdam. 1234
    de Groot, P. A., 2009. Handbook of Stable Isotope Analytical Techniques, Vol. 2. Elsevier, Amsterdam. 1372
    Dekate, Y. G., 1967. Tungsten Occurrences in India and Their Genesis. Economic Geology, 62(4):556-561. https://doi.org/10.2113/gsecongeo.62.4.556
    Duan, Z. H., Møller, N., Weare, J. H., 1992. An Equation of State for the CH4-CO2-H2O System:Ⅱ. Mixtures from 50 to 1 000℃ and 0 to 1 000 bar. Geochimica et Cosmochimica Acta, 56(7):2619-2631. https://doi.org/10.1016/0016-7037(92)90348-m doi: 10.1016/0016-7037(92)90348-M
    Èerný, P., Blevin, P. L., Cuney, M., et al., 2005. Granite-Related Ore Deposits. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., Granite-Related Ore Deposits. MPG Books Ltd., Bodmin. 337-370
    Eugster, H. P., 1985. Granites and Hydrothermal Ore Deposits:A Geochemical Framework. Mineralogical Magazine, 49(350):7-23. https://doi.org/10.1180/minmag.1985.049.350.02
    Fermor, L. L., 1908. Note on Occurrence of Wolfram in the Nagpur District, Central Provinces. Rec. Geol. Sury. India, 36(4):301-311
    Goldstein, R. H., 2003. Petrographic Analysis of Fluid Inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions Analysis and Interpretation, Short Course Series, Vol. 32. Mineralogical Association of Canada. 9-53
    Goldstein, R. H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM Short Course 31, Soc. Sediment. Geol. 199
    Heinrich, C. A., 1990. The Chemistry of Hydrothermal Tin(-Tungsten) Ore Deposition. Economic Geology, 85(3):457-481. https://doi.org/10.2113/gsecongeo.85.3.457
    Hoefs, J., 2009. Stable Isotope Geochemistry. Springer-Verlag, Berlin. 288
    Jaireth, S., Heinrich, C. A., Solomon, M., 1990. Chemical Controls on Hydrothermal Tungsten Transport in Some Magmatic Systems and the Precipitation of Ferberite and Scheelite. Geol. Soc. Australia Abs., 25:269-270 https://www.researchgate.net/publication/313220307_Chemical_controls_on_hydrothermal_tungsten_transport_in_some_magmatic_systems_and_the_precipitation_of_ferberite_and_scheelite
    Lokras, K. V., Gajbhiye, N. G., Raju, A. V., 1981. Agargaon Tungsten Deposit, Nagpur District, Maharastra. GSI Bulletin, 42:83
    Lu, H. Z., Fan, H. R., Ni, P., et al., 2004. Fluid Inclusions. Science Press, Beijing. 406-419
    Marini, L., Chiappini, V., Cioni, R., et al., 1998. Effect of Degassing on Sulfur Contents and δ34S Values in Somma-Vesuvius Magmas. Bulletin of Volcanology, 60(3):187-194. https://doi.org/10.1007/s004450050226
    Mohan, M., Bhoskar, K. G., 1990. Tungsten Metallogeny Related to Acid Magmatism in the Sakoli Group, Central India. Geol. Surv. Ind. Spl. Pub., 28:648-657
    Narsimhan, D., Rao, N. K., Panchapakesan, V., et al., 1997. Tungsten Mineralisation at Khobna, Maharashtra:Fluid Inclusion Studies. J. Geol. Sco. Ind., 50:343-346 https://www.researchgate.net/publication/294578744_Tungsten_mineralisation_at_Khobna_Maharashtra_Fluid_inclusion_studies
    Ohmoto H., Rye, R. O., 1979. Isotopes of Sulfur and Carbon. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons, New York. 509-567
    Pophare, A. M., Varade, A. M., Kanojkar, D. M., et al., 2006. Ore Genetic Modeling of Tungsten Mineralisation in Kuhi-Khobana-Agargaon Belt, Nagpur District, Maharashtra. Journal of Applied Geochemistry, 8(2A):430-440 https://www.researchgate.net/publication/275651122_Ore_genetic_modelling_of_Tungsten_mineralization_at_Kuhi-Khobana-Agargaon_belt_Nagpur_District_Maharashtra
    Pouchou, J. L., Pichoir, F., 1984. A New Model for Quantitative X-Ray Microanalyses, Part Ⅰ:Application to the Analyses of Homogenous Samples. Recherche Aerospatiale, V(3):13-36
    Raychaudhury, J. K., Das, M., 1981. Base Metal Mineralisation in the Sakoli Metamporphites in Parts of Nagpur-Bhandara Districts, Maharashtra. Geol. Sruv. Ind. Spl. Pub., 3:227-237 https://www.researchgate.net/publication/292401514_Basemetal_mineralisation_in_Sakoli_metamorphites_in_parts_of_Nagpur-Bhandara_districts_Maharashtra
    Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy, 12:644 http://d.old.wanfangdata.com.cn/Periodical/dqkx200802015
    Roy, A. K., Charles Mony, P. C. D., Saha, A. K., 1994. Geology of the Sakoli Fold Belt, Nagpur, Bhandara and Gadchiroli Districts, Maharashtra, Central India. Geological Survey of India, Rep. Nagpur for the F. S. 1988-1994
    Roy, A., Charles Mony, P. C. D., Saha, S. K., 1996. Geology of the Sakoli Fold Belt, Nagpur, Bhandara, and Gadchiroli Districts, Maharashtra, Central India. Geological Survey of India, Rep. Nagpur for the F. S. 1988-1994
    Saha, A. K., Chattopadhyay, S., Kanhu, C. M., et al., 2001. Polymetallic Mineralisation in Sakoli Fold Belt Their Genetic Modeling Using Fluid Inclusion and Sulfur Isotope Data. Geol. Surv. Ind. Spl. Pub., 64:307-398
    Seetharam, R., 1990. Ore Mineralogy of the Khobna Tungsten Prospect, Nagpur District, Maharashtra. GSI Special Publication, 28:599-617
    Sengupta, K. K., 1941. Note on the Occurrence of Scheelite near Agargaon. Quart. Jour. Geol. Min. Met. Soc. Ind., 13:179-189
    Shepherd, T. J., Rankin, A. H., Alderton, D. H. M., 1985. A Practical Guide to Fluid Inclusion Studies. Blackie, Glasgow, London. 239
    Thiery, R., Vidal, J., Dubessy, J., 1994. Phase Equilibria Modelling Applied to Fluid Inclusions:Liquid-Vapour Equilibria and Calculation of the Molar Volume in the CO2-CH4-N2 System. Geochimica et Cosmochimica Acta, 58(3):1073-1082. https://doi.org/10.1016/0016-7037(94)90573-8
    Touret, J. L. R., 2001. Fluids in Metamorphic Rocks. Lithos, 55(1/2/3/4):1-25. https://doi.org/10.1016/s0024-4937(00)00036-0 http://d.old.wanfangdata.com.cn/Periodical/dxqy-e201803005
    van den Kerkhof, A. M., 1988. Phase Transitions and Molar Volumes of CO2-CH4-N2 Inclusions. Bulletin de Minéralogie, 111(3):257-266. https://doi.org/10.3406/bulmi.1988.8046
    Wang, X. D., Ni, P., Yuan, S. D., et al., 2012. Fluid Inclusion Studies of the Huangsha Quartz-Vein Type Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28:122-132 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201201010
    Zhang, Y. G., Frantz, J. D., 1987. Determination of the Homogenization Temperatures and Densities of Supercritical Fluids in the System NaCl-KCl-CaCl2-H2O Using Synthetic Fluid Inclusions. Chemical Geology, 64(3/4):335-350. https://doi.org/10.1016/0009-2541(87)90012-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(518) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return