Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 3
Jul 2020
Turn off MathJax
Article Contents
Rajagopal Krishnamurthi, Ajit Kumar Sahoo, Rajesh Sharma, Prabhakar Sangurmath. Abundance of Carbonic Fluid Inclusions in Hira-Buddini Gold Deposit, Hutti-Maski Greenstone Belt, India: Inferences from Petrography and Volume Ratio Estimation of Fluid Components. Journal of Earth Science, 2020, 31(3): 492-499. doi: 10.1007/s12583-019-1272-3
Citation: Rajagopal Krishnamurthi, Ajit Kumar Sahoo, Rajesh Sharma, Prabhakar Sangurmath. Abundance of Carbonic Fluid Inclusions in Hira-Buddini Gold Deposit, Hutti-Maski Greenstone Belt, India: Inferences from Petrography and Volume Ratio Estimation of Fluid Components. Journal of Earth Science, 2020, 31(3): 492-499. doi: 10.1007/s12583-019-1272-3

Abundance of Carbonic Fluid Inclusions in Hira-Buddini Gold Deposit, Hutti-Maski Greenstone Belt, India: Inferences from Petrography and Volume Ratio Estimation of Fluid Components

doi: 10.1007/s12583-019-1272-3
More Information
  • Corresponding author: Rajagopal Krishnamurthi, ORCID:0000-0001-7165-6937.E-mail:krishnamurthi.iitr@gmail.com
  • Received Date: 28 Dec 2018
  • Accepted Date: 25 Sep 2019
  • Publish Date: 01 Jun 2020
  • Low saline aqueous carbonic fluids are considered to be the ore forming solutions for orogenic lode gold deposits. Phase separation/fluid immiscibility of the ore fluid is quite common and is one of the major reasons for deposition of gold in these deposits. Abundant carbonic fluid inclusions have been observed in quartz grains of Hira-Buddnini Gold Deposit. Theoretical estimation indicates that more volume of H2O compared to CO2 is likely to be trapped in inclusions at different P-T conditions. Preferential loss of H2O from fluid inclusions during ductile deformation of quartz grains have been attributed as the suitable reason for abundance of carbonic fluid inclusions.

     

  • loading
  • Anand, R., Balakrishnan, S., Kooijman, E., et al., 2014. Neoarchean Crustal Growth by Accretionary Processes:Evidence from Combined Zircon-Titanite U-Pb Isotope Studies on Granitoid Rocks around the Hutti Greenstone Belt, Eastern Dharwar Craton, India. Journal of Asian Earth Sciences, 79:72-85. https://doi.org/10.1016/j.jseaes.2013.09.017
    Bakker, R. J., Jansen, J. B. H., 1990. Preferential Water Leakage from Fluid Inclusions by Means of Mobile Dislocations. Nature, 345(6270):58-60. https://doi.org/10.1038/345058a0
    Bakker, R. J., Jansen, J. B. H., 1994. A Mechanism for Preferential H2O Leakage from Fluid Inclusions in Quartz, Based on TEM Observations. Contributions to Mineralogy and Petrology, 116(1/2):7-20. https://doi.org/10.1007/bf00310686
    Bodnar, R. J., 2003. Reequilibration of Fluid Inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions: Analysis and Interpretation. Mineral. Assoc. Canada, Short Course 32. Mineralogical Association of Canada, Vancouver. 213-230
    Chadwick, B., Vasudev, V. N., Hegde, G. V., 2000. The Dharwar Craton, Southern India, Interpreted as the Result of Late Archaean Oblique Convergence. Precambrian Research, 99(1/2):91-111. https://doi.org/10.1016/s0301-9268(99)00055-8
    Colvine, A. C., Fyon, J. A., Heather, K. B., et al., 1988. Archean Lode Gold Deposits in Ontario. Ontario Ministry of Northern Development and Mines, Paper 139, Sudbury. 154
    Diamond, L. W., 2003. Systematics of H2O inclusions. In: Samson, I., Anderson, A., Marshall, D., eds., Fluid Inclusions: Analysis and Interpretation. Mineral. Assoc. Canada, Short Course 32. Mineralogical Association of Canada, Vancouver. 55-79
    Dijkstra, I., Schmatz, J., Post, A., et al., 2011. The Role of Fluid-Inclusion Composition on Dynamic Recrystallization in Experimentally Deformed Quartz Single Crystals. Journal of the Virtual Explorer, 38. https://doi.org/10.3809/jvirtex.2011.00281
    Elmer, F. L., White, R. W., Powell, R., 2006. Devolatilization of Metabasic Rocks during Greenschist-Amphibolite Facies Metamorphism. Journal of Metamorphic Geology, 24(6):497-513. https://doi.org/10.1111/j.1525-1314.2006.00650.x
    Eilu, P. K., Mathison, C., Groves, D., et al., 1999. Atlas of Alteration Assemblages, Styles and Zoning in Orogenic Lode-Gold Deposits in a Variety of Host Rock and Metamorphic Settings. Geology Publications, UWA Extension, University of Western Australia, Perth. 50
    Gebre-Mariam, M., Hagemann, S. G., Groves, D. I., 1995. A Classification Scheme for Epigenetic Archaean Lode-Gold Deposits. Mineralium Deposita, 30(5):408-410. https://doi.org/10.1007/bf00202283
    Gill, R., 2014. Chemical Fundamentals of Geology and Environmental Geoscience. John Wiley & Son, Chichester. 261
    Giritharan, T. S., Rajamani, V., 1998. Geochemistry of the Metavolcanics of the Hutti-Maski Schist Belt, South India:Implications to Gold Metallogeny in the Eastern Dharwar Craton. Geological Society of India, 51(5):583-594
    Goldfarb, R. J., Groves, D. I., 2015. Orogenic Gold:Common or Evolving Fluid and Metal Sources through Time. Lithos, 233:2-26. https://doi.org/10.1016/j.lithos.2015.07.011
    Goldfarb, R. J., Groves, D. I., Gardoll, S., 2001. Orogenic Gold and Geologic Time:A Global Synthesis. Ore Geology Reviews, 18(1/2):1-75. https://doi.org/10.1016/s0169-1368(01)00016-6
    Groves, D. I., Goldfarb, R. J., Robert, F., et al., 2003. Gold Deposits in Metamorphic Belts:Overview of Current Understanding, Outstanding Problems, Future Research, and Exploration Significance. Economic Geology, 98(1):1-29. https://doi.org/10.2113/gsecongeo.98.1.1
    Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., et al., 1998. Orogenic Gold Deposits:A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types. Ore Geology Reviews, 13(1/2/3/4/5):7-27. https://doi.org/10.1016/s0169-1368(97)00012-7
    Hall, D. L., Sterner, S. M., 1993. Preferential Water Loss from Synthetic Fluid Inclusions. Contributions to Mineralogy and Petrology, 114(4):489-500. https://doi.org/10.1007/bf00321753
    Hazarika, P., Pruseth, K. L., Mishra, B., 2015a. Neoarchean Greenstone Metamorphism in the Eastern Dharwar Craton, India:Constraints from Monazite U-Th-Pbtotal Ages and PT Pseudosection Calculations. The Journal of Geology, 123(5):429-461. https://doi.org/10.1086/683334
    Hazarika, P., Mishra, B., Pruseth, K. L., 2015b. Diverse Tourmaline Compositions from Orogenic Gold Deposits in the Hutti-Maski Greenstone Belt, India:Implications for Sources of Ore-Forming Fluids. Economic Geology, 110(2):337-353. https://doi.org/10.2113/econgeo.110.2.337
    Hagemann, S. G., Brown, P. E., 1996. Geobarometry in Archean Lode-Gold Deposits. European Journal of Mineralogy, 8(5):937-960. https://doi.org/10.1127/ejm/8/5/0937
    Holland, T., Powell, R., 1991. A Compensated-Redlich-Kwong (CORK) Equation for Volumes and Fugacities of CO2 and H2O in the Range 1 bar to 50 kbar and 100-1 600 ℃. Contributions to Mineralogy and Petrology, 109(2):265-273. https://doi.org/10.1007/bf00306484
    Jayananda, M., Peucat, J. J., Chardon, D., et al., 2013. Neoarchean Greenstone Volcanism and Continental Growth, Dharwar Craton, Southern India:Constraints from SIMS U-Pb Zircon Geochronology and Nd Isotopes. Precambrian Research, 227:55-76. https://doi.org/10.1016/j.precamres.2012.05.002
    Kerrich, R., 1976. Some Effects of Tectonic Recrystallisation on Fluid Inclusions in Vein Quartz. Contributions to Mineralogy and Petrology, 59(2):195-202. https://doi.org/10.1007/bf00371308
    Krienitz, M. S., Trumbull, R. B., Hellmann, A., et al., 2008. Hydrothermal Gold Mineralization at the Hira Buddini Gold Mine, India:Constraints on Fluid Evolution and Fluid Sources from Boron Isotopic Compositions of Tourmaline. Mineralium Deposita, 43(4):421-434. https://doi.org/10.1007/s00126-007-0172-0
    McCuaig, T. C., Kerrich, R., 1998. P-T-t-Deformation-Fluid Characteristics of Lode Gold Deposits:Evidence from Alteration Systematics. Ore Geology Reviews, 12(6):381-453. https://doi.org/10.1016/s0169-1368(98)80002-4
    Michels, A., Michels, C., 1933. The Influence of Pressure on the Dielectric Constant of Carbon Dioxide up to 1 000 Atmospheres between 25 and 150℃. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 231(694-706):409-434. https://doi.org/10.1098/rsta.1933.0011
    Mishra, B., Pal, N., 2008. Metamorphism, Fluid Flux, and Fluid Evolution Relative to Gold Mineralization in the Hutti-Maski Greenstone Belt, Eastern Dharwar Craton, India. Economic Geology, 103(4):801-827. https://doi.org/10.2113/gsecongeo.103.4.801
    Owona, S., Ondoa, J. M., Ekodeck, G. E., 2013. Evidence of Quartz, Feldspar and Amphibole Crystal Plastic Deformations in the Paleoproterozoic Nyong Complex Shear Zones under Amphibolite to Granulite Conditions (West Central African Fold Belt, SW Cameroon). Journal of Geography and Geology, 5(3):186-201. https://doi.org/10.5539/jgg.v5n3p186
    Pal, N., Mishra, B., 2002. Alteration Geochemistry and Fluid Inclusion Characteristics of the Greenstone-Hosted Gold Deposit of Hutti, Eastern Dharwar Craton, India. Mineralium Deposita, 37(8):722-736. https://doi.org/10.1007/s00126-002-0257-8
    Passchier, C. W., Trouw, R. A. J., 2005. Microtectonics. Springer, Heidelberg. 366
    Phillips, G. N., Powell, R., 2010. Formation of Gold Deposits:A Metamorphic Devolatilization Model. Journal of Metamorphic Geology, 28(6):689-718. https://doi.org/10.1111/j.1525-1314.2010.00887.x
    Ridley, J., Mikucki, E. J., Groves, D. I., 1996. Archean Lode-Gold Deposits:Fluid Flow and Chemical Evolution in Vertically Extensive Hydrothermal Systems. Ore Geology Reviews, 10(3/4/5/6):279-293. https://doi.org/10.1016/0169-1368(95)00027-5
    Ridley, J. R., Diamond, L. W., 2000. Fluid Chemistry of Orogenic Lode Gold Deposits and Implications for Genetic Models. Reviews in Economic Geology, 13:141-162
    Rogers, A. J., Kolb, J., Meyer, F. M., et al., 2007. Tectono-Magmatic Evolution of the Hutti-Maski Greenstone Belt, India:Constrained Using Geochemical and Geochronological Data. Journal of Asian Earth Sciences, 31(1):55-70. https://doi.org/10.1016/j.jseaes.2007.04.003
    Sahoo, A. K., Krishnamurthi, R., Sangurmath, P., 2018. Nature of Ore Forming Fluids, Wallrock Alteration and P-T Conditions of Gold Mineralization at Hira-Buddini, Hutti-Maski Greenstone Belt, Dharwar Craton, India. Ore Geology Reviews, 99:195-216. https://doi.org/10.1016/j.oregeorev.2018.06.008
    Sahoo, A. K., Krishnamurthi, R., Sangurmath, P., 2016. Auriferous Lode of Hira-Buddini Gold Mine, Hutti-Maski Schist Belt, Dharwar Craton:Mineralogy, Alteration, Types and Mechanism of Vein Emplacement. Journal of the Geological Society of India, 88(6):675-684. https://doi.org/10.1007/s12594-016-0534-2
    Sarma, D. S., Mcnaughton, N. J., Fletcher, I. R., et al., 2008. Timing of Gold Mineralization in the Hutti Gold Deposit, Dharwar Craton, South India. Economic Geology, 103(8):1715-1727. https://doi.org/10.2113/gsecongeo.103.8.1715
    Saunders, J. A., Hofstra, A. H., Goldfarb, R. J., et al., 2014. Geochemistry of Hydrothermal Gold Deposits. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry, Second Edition, 13: 383-424
    Srikantia, S., 1995. Geology of the Hutti-Maski Greenstone Belt. In: Curtis, L. C., Radhakrishna, B. P., eds., Hutti Gold Mine into the 21st Century. Geological Society of India, Bangalore. 8-27
    Sterner, S. M., Hall, D. L., Keppler, H., 1995. Compositional Re-Equilibration of Fluid Inclusions in Quartz. Contributions to Mineralogy and Petrology, 119(1):1-15. https://doi.org/10.1007/bf00310713
    Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002a. The Eastern Tonale Fault Zone:A 'Natural Laboratory' for Crystal Plastic Deformation of Quartz over a Temperature Range from 250 to 700℃. Journal of Structural Geology, 24(12):1861-1884. https://doi.org/10.1016/s0191-8141(02)00035-4
    Stipp, M., Stünitz, H., Heilbronner, R., et al., 2002b. Dynamic Recrystallization of Quartz:Correlation between Natural and Experimental Conditions. Geological Society, London, Special Publications, 200(1):171-190. https://doi.org/10.1144/gsl.sp.2001.200.01.11
    Tomkins, A. G., 2010. Windows of Metamorphic Sulfur Liberation in the Crust:Implications for Gold Deposit Genesis. Geochimica et Cosmochimica Acta, 74(11):3246-3259. https://doi.org/10.1016/j.gca.2010.03.003
    Vityk, M. O., Bodnar, R. J., 1995. Textural Evolution of Synthetic Fluid Inclusions in Quartz during Reequilibration, with Applications to Tectonic Reconstruction. Contributions to Mineralogy and Petrology, 121(3):309-323. https://doi.org/10.1007/bf02688246
    Vityk, M. O., Bodnar, R. J., Doukhan, J. C., 2000. Synthetic Fluid Inclusions. XV. TEM Investigation of Plastic Flow Associated with Reequilibration of Fluid Inclusions in Natural Quartz. Contributions to Mineralogy and Petrology, 139(3):285-297. https://doi.org/10.1007/s004100000142
    Williams-Jones, A. E., Bowell, R. J., Migdisov, A. A., 2009. Gold in Solution. Elements, 5(5):281-287. https://doi.org/10.2113/gselements.5.5.281
    Witt, W. K., 1993. Lithological and Structural Controls on Gold Mineralization in the Archaean Menzies-Kambalda Area, Western Australia. Australian Journal of Earth Sciences, 40(1):65-86. https://doi.org/10.1080/08120099308728064
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views(289) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return