Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 1
Feb 2023
Turn off MathJax
Article Contents
Heng Peng, Jianqiang Wang, Chiyang Liu, Shaohua Zhang, Yazhuo Niu, Tianbing Zhang, Bo Song, Wei Han. Mesozoic Tectonothermal Evolution of the Southern Central Asian Orogenic Belt: Evidence from Apatite Fission-Track Thermochronology in Shalazha Mountain, Inner Mongolia. Journal of Earth Science, 2023, 34(1): 37-53. doi: 10.1007/s12583-020-1053-z
Citation: Heng Peng, Jianqiang Wang, Chiyang Liu, Shaohua Zhang, Yazhuo Niu, Tianbing Zhang, Bo Song, Wei Han. Mesozoic Tectonothermal Evolution of the Southern Central Asian Orogenic Belt: Evidence from Apatite Fission-Track Thermochronology in Shalazha Mountain, Inner Mongolia. Journal of Earth Science, 2023, 34(1): 37-53. doi: 10.1007/s12583-020-1053-z

Mesozoic Tectonothermal Evolution of the Southern Central Asian Orogenic Belt: Evidence from Apatite Fission-Track Thermochronology in Shalazha Mountain, Inner Mongolia

doi: 10.1007/s12583-020-1053-z
More Information
  • Corresponding author: Jianqiang Wang, wjq@nwu.edu.cn
  • Received Date: 23 Apr 2020
  • Accepted Date: 26 Jul 2020
  • Available Online: 02 Feb 2023
  • Issue Publish Date: 28 Feb 2023
  • Mesozoic intracontinental orogeny and deformation were widespread within the southern Central Asian Orogenic Belt (CAOB). Chronological constraints remain unclear when assessing the Mesozoic evolution of the central segment of this region. The tectonic belt of Shalazha Mountain located in the center of this region is an ideal place to decode the deformation process. Apatite fission-track (AFT) thermochronology in Shalazha Mountain is applied to constrain the Mesozoic tectonothermal evolution of the central segment of southern CAOB. The bedrock AFT ages range from 161.8 ± 6.9 to 137.0 ± 7.3 Ma, and the first reported detrital AFT obtained from Lower Cretaceous strata shows three age peaks: P1 (ca. 178 Ma), P2 (ca. 149 Ma) and P3 (ca. 105.6 Ma). Bedrock thermal history modeling indicates that Shalazha Mountain have experienced three stages of differential cooling: Late Triassic–Early Jurassic (~230–174 Ma), Late Jurassic–Earliest Cretaceous (~174–135 Ma) and later (~135 Ma). The first two cooling stages are well preserved by the detrital AFT thermochronological result (P1, P2) from the adjacent Lower Cretaceous strata, while P3 (ca. 105.6 Ma) records coeval volcanic activity. Furthermore, our data uncover that hanging wall samples cooled faster between the Late Triassic and the Early Cretaceous than those from the footwall of Shalazha thrust fault, which synchronizes with the cooling of the Shalazha Mountain and implies significant two-stage thrust fault activation between ca. 230 and 135 Ma. These new low-temperature thermochronological results from the Shalazha Mountain region and nearby reveal three main phases of differential tectonothermal events representing the Mesozoic reactivation of the central segment of the southern CAOB. In our interpretations, the initial rapid uplift in the Late Triassic was possibly associated with intracontinental orogenesis of the CAOB. Subsequent Middle Jurassic–Earliest Cretaceous cooling is highly consistent with the Mesozoic intense intraplate compression that occurred in the southern CAOB, and is interpreted as a record of closure of the Mongol-Okhotsk Ocean. Then widespread Cretaceous denudation and burial in the adjacent fault basin could be linked with the oblique subduction of the Izanagi Plate along the eastern Eurasian Plate, creating a northeast-trending normal fault and synchronous extension. However, our AFT thermochronometry detects no intense Cenozoic reactivation information of Shalazha Mountain region.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1, Fig. S1) are available in the online version of this article at https://doi.org/10.1007/s12583-020-1053-z.
  • loading
  • Barbarand, J., Carter, A., Wood, I., et al., 2003. Compositional and Structural Control of Fission-Track Annealing in Apatite. Chemical Geology, 198(1/2): 107–137. https://doi.org/10.1016/S0009-2541(02)00424-2
    Bernet, M., Garver, J. I., 2005. Fission-Track Analysis of Detrital Zircon. Reviews in Mineralogy and Geochemistry, 58(1): 205–237. https://doi.org/10.2138/rmg.2005.58.8
    Brandon, M. T., 2002. Decomposition of Mixed Grain Age Distributions Using Binomfit. On Track, 24(8): 13–18
    Bu, J. J., Niu, Z. J., Wu, J., et al., 2012. Sedimentary Characteristics and Age of Amushan Formation in Ejin Banner and Its Adjacent Areas, Western Inner Mongolia. Geological Bulletin of China, 31(10): 1669–1683 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-2552.2012.10.012
    Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region, 2001. Geological Map and Report of the Olji Area, Scale 1 : 200 000 (in Chinese)
    Carlson, W. D., Donelick, R. A., Ketcham, R. A., 1999. Variability of Apatite Fission-Track Annealing Kinetics; I, Experimental Results. American Mineralogist, 84(9): 1213–1223. https://doi.org/10.2138/am-1999-0901
    Chen, Z. P., Ren, Z. L., Qi, K., et al., 2019. Zircon U-Pb Chronology and Geochemistry of Volcanic Rocks of Early Cretaceous Bayingebi Formation in Suhongtu Depression of the Ying'e Basin, and Their Tectonic Implications. Acta Geologica Sinica, 93(2): 353–367. https://doi.org/10.19762/j.cnki.dizhixuebao.2019020 (in Chinese with English Abstract)
    Cui, X. Y., Zhao, Q. H., Zhang, J., et al., 2018. Late Cretaceous–Cenozoic Multi-Stage Denudation at the Western Ordos Block: Constraints by the Apatite Fission Track Dating on the Langshan. Acta Geologica Sinica (English Edition), 92(2): 536–555. http://doi.org/10.1111/1755-6724.13541
    Cunningham, D., 2017. Folded Basinal Compartments of the Southern Mongolian Borderland: A Structural Archive of the Final Consolidation of the Central Asian Orogenic Belt. Geosciences, 7(1): 2. https://doi.org/10.3390/geosciences7010002
    Darby, B. J., Ritts, B. D., 2002. Mesozoic Contractional Deformation in the Middle of the Asian Tectonic Collage: The Intraplate Western Ordos Fold-Thrust Belt, China. Earth and Planetary Science Letters, 205(1/2): 13–24. https://doi.org/10.1016/S0012-821X(02)01026-9
    de Grave, J., Glorie, S., Buslov, M. M., et al., 2011. The Thermo-Tectonic History of the Song-Kul Plateau, Kyrgyz Tien Shan: Constraints by Apatite and Titanite Thermochronometry and Zircon U/Pb Dating. Gondwana Research, 20(4): 745–763. https://doi.org/10.1016/j.gr.2011.03.011
    Donelick, R. A., O'Sullivan, P. B., Ketcham, R. A., 2005. Apatite Fission-Track Analysis. Reviews in Mineralogy and Geochemistry, 58(1): 49–94. https://doi.org/10.2138/rmg.2005.58.3
    Dong, S. W., Zhang, Y. Q., Li, H. L., et al., 2018. The Yanshan Orogeny and Late Mesozoic Multi-Plate Convergence in East Asia—Commemorating 90th Years of the "Yanshan Orogeny". Science China Earth Sciences, 61(12): 1888–1909. https://doi.org/10.1007/s11430-017-9297-y
    Dong, S. W., Zhang, Y., Zhang, F., et al., 2015. Late Jurassic–Early Cretaceous Continental Convergence and Intracontinental Orogenesis in East Asia: a Synthesis of the Yanshan Revolution. Journal of Asian Earth Sciences, 114: 750–770. https://doi.org/10.1016/j.jseaes.2015.08.011
    Dumitru, T. A., Hendrix, M. S., 2001. Fission-Track Constraints on Jurassic Folding and Thrusting in Southern Mongolia and Their Relationship to the Beishan Thrust Belt of Northern China. Memoir of the Geological Society of America, 194: 215–229. https://doi.org/10.1130/0-8137-1194-0.215
    Dunkl, I., 2002. Trackkey: A Windows Program for Calculation and Graphical Presentation of Fission Track Data. Computers & Geosciences, 28(1): 3–12. https://doi.org/10.1016/S0098-3004(01)00024-3
    Duvall, A. R., Clark, M. K., Kirby, E., et al., 2013. Low-Temperature Thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for Kinematic Change during Late-Stage Orogenesis. Tectonics, 32(5): 1190–1211. https://doi.org/10.1002/tect.20072
    Feng, L. X., Brown, R. W., Han, B. F., et al., 2017. Thrusting and Exhumation of the Southern Mongolian Plateau: Joint Thermochronological Constraints from the Langshan Mountains, Western Inner Mongolia, China. Journal of Asian Earth Sciences, 144: 287–302. https://doi.org/10.1016/j.jseaes.2017.01.001
    Galbraith, R. F., 1981. On Statistical Models for Fission Track Counts. Journal of the International Association for Mathematical Geology, 13(6): 471–478. https://doi.org/10.1007/BF01034498
    Gallagher, K., 2012. Transdimensional Inverse Thermal History Modeling for Quantitative Thermochronology. Journal of Geophysical Research: Solid Earth, 117(B2): B02408. https://doi.org/10.1029/2011jb008825
    Garver, J. I., Brandon, M. T., Roden-Tice, M., et al., 1999. Exhumation History of Orogenic Highlands Determined by Detrital Fission-Track Thermochronology. Geological Society, London, Special Publications, 154(1): 283–304. https://doi.org/10.1144/gsl.sp.1999.154.01.13
    George, A. D., Marshallsea, S. J., Wyrwoll, K. H., et al., 2001. Miocene Cooling in the Northern Qilian Shan, Northeastern Margin of the Tibetan Plateau, Revealed by Apatite Fission-Track and Vitrinite-Reflectance Analysis. Geology, 29(10): 939–942. https://doi.org/10.1130/0091-7613(2001)029<0939:mcitnq>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0939:mcitnq>2.0.co;2
    Gillespie, J., Glorie, S., Xiao, W. J., et al., 2017. Mesozoic Reactivation of the Beishan, Southern Central Asian Orogenic Belt: Insights from Low-Temperature Thermochronology. Gondwana Research, 43: 107–122. https://doi.org/10.1016/j.gr.2015.10.004
    Glorie, S., Grave, J. D., 2016. Exhuming the Meso-Cenozoic Kyrgyz Tianshan and Siberian Altai-Sayan: A Review Based on Low-Temperature Thermochronology. Geoscience Frontiers, 7(2): 155–170. https://doi.org/10.1016/j.gsf.2015.04.003
    Guan, Y., 2019. Late Reformation and Hydrocarbon Preservation of Carboniferous–Permian System in the Juyanhai Depression of Yin'E Basin: [Dissertation]. Northwest University, Xi'an (in Chinese with English Abstract)
    Guo, P., Liu, C. Y., Wang, J. Q., et al., 2018. Detrital Zircon Geochronology of the Jurassic Strata in the Western Ordos Basin, North China: Constraints on the Provenance and Its Tectonic Implication. Geological Journal, 53(4): 1482–1499. https://doi.org/10.1002/gj.2968
    Han, W., 2017. Study of Sedimentary-Tectonic Evolution since Late Paleozoic and Its Impacts on Oil and Gas Geological Conditions of Yin-E Basin: [Dissertation]. Northwest University, Xi'an (in Chinese with English Abstract)
    Han, W., Lu, J. C., Wei, J. S., et al., 2015. Apatite Fission Track Constraints on the Mesozoic Tectonic Activities in Shangdan Depression, Yin'e Basin, Inner Mongolia. Acta Geologica Sinica, 89(12): 2277–2285. https://doi.org/10.3969/j.issn.0001-5717.2015.12.007
    Han, W., Lu, J. C., Zhang, Y. P., et al., 2014. Apatite Fission Track and Its Petroleum Geological Significance of the Ejina Area and Its Vicinity, Western Inner Mongolia. Geotectonica et Metallogenia, 38(3): 647–655. https://doi.org/10.16539/j.ddgzyckx.2014.03.013 (in Chinese with English Abstract)
    Hu, C. S., Li, W. B., Xu, C., et al., 2015. Geochemistry and Petrogenesis of Permian Granitoids in the Northwestern Margin of the North China Craton: Insights from the Dongshengmiao Pluton, Inner Mongolia. International Geology Review, 57(14): 1843–1860. https://doi.org/10.1080/00206814.2015.1039087
    Hu, S., Kohn, B. P., Raza, A., et al., 2006. Cretaceous and Cenozoic Cooling History across the Ultrahigh Pressure Tongbai-Dabie Belt, Central China, from Apatite Fission-Track Thermochronology. Tectonophysics, 420(3/4): 409–429. https://doi.org/10.1016/j.tecto.2006.03.027
    Hurford, A. J., Green, P. F., 1983. The Zeta Age Calibration of Fission-Track Dating. Chemical Geology, 41: 285–317. https://doi.org/10.1016/S0009-2541(83)80026-6
    Hurford, A. J., 1990. Standardization of Fission Track Dating Calibration: Recommendation by the Fission Track Working Group of the I. U. G. S. Subcommission on Geochronology. Chemical Geology: Isotope Geoscience Section, 80(2): 171–178. https://doi.org/10.1016/0168-9622(90)90025-8
    Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73–100. https://doi.org/10.1144/gsl.sp.2004.226.01.05
    Jiang, S. Y., Jiang, H., Zhao, K. D., 2019. Mesozoic Metallogeny of Southeast Asia: A Preface. Journal of Earth Science, 30(1): 5–8. https://doi.org/10.1007/s12583-018-0871-8
    Jolivet, M., Brunel, M., Seward, D., et al., 2001. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau: Fission-Track Constraints. Tectonophysics, 343(1/2): 111–134. https://doi.org/10.1016/S0040-1951(01)00196-2
    Jolivet, M., Ritz, J. F., Vassallo, R., et al., 2007. Mongolian Summits: an Uplifted, Flat, Old but still Preserved Erosion Surface. Geology, 35(10): 871–874. https://doi.org/10.1130/g23758a.1
    Ketcham, R. A., 2005. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry, 58(1): 275–314. https://doi.org/10.2138/rmg.2005.58.11
    Ketcham, R. A., Carter, A., Donelick, R. A., et al., 2007a. Improved Modeling of Fission-Track Annealing in Apatite. American Mineralogist, 92(5/6): 799–810. https://doi.org/10.2138/am.2007.2281
    Ketcham, R. A., Carter, A., Donelick, R. A., et al., 2007b. Improved Measurement of Fission-Track Annealing in Apatite Using C-Axis Projection. American Mineralogist, 92(5/6): 789–798. https://doi.org/10.2138/am.2007.2280
    Lamb, M. A., Badarch, G., Navratil, T., et al., 2008. Structural and Geochronologic Data from the Shin Jinst Area, Eastern Gobi Altai, Mongolia: Implications for Phanerozoic Intracontinental Deformation in Asia. Tectonophysics, 451(1/2/3/4): 312–330. https://doi.org/10.1016/j.tecto.2007.11.061
    Li, B., Chen, X., Zuza, A. V., et al., 2019. Cenozoic Cooling History of the North Qilian Shan, Northern Tibetan Plateau, and the Initiation of the Haiyuan Fault: Constraints from Apatite- and Zircon-Fission Track Thermochronology. Tectonophysics, 751: 109–124. https://doi.org/10.1016/j.tecto.2018.12.005
    Li, B. S., Yan, M. D., Zhang, W. L., et al., 2017. New Paleomagnetic Constraints on Middle Miocene Strike-Slip Faulting along the Middle Altyn Tagh Fault: Mid-Miocene Faulting of Altyn Tagh Fault. Journal of Geophysical Research: Solid Earth, 122(6): 4106–4122. https://doi.org/10.1002/2017JB014058
    Li, B. S., Yan, M. D., Zhang, W. L., et al., 2018. Paleomagnetic Rotation Constraints on the Deformation of the Northern Qaidam Marginal Thrust Belt and Implications for Strike-Slip Faulting along the Altyn Tagh Fault. Journal of Geophysical Research: Solid Earth, 123(9): 7207–7224. https://doi.org/10.1029/2018JB015753
    Li, S. Z., Suo, Y. H., Santosh, M., et al., 2013. Mesozoic to Cenozoic Intracontinental Dynamics of the North China Block. Geological Journal, 48(5): 543–560. https://doi.org/10.1002/gj.2500
    Liu, J. H., Zhang, P. Z., Zheng, D. W., et al., 2010. Pattern and Timing of Late Cenozoic Rapid Exhumation and Uplift of the Helan Mountain, China. Science China Earth Sciences, 53(3): 345–355. https://doi.org/10.1007/s11430-010-0016-0
    Liu, M., Lai, S. C., Zhang, D., et al., 2019. Early–Middle Triassic Intrusions in Western Inner Mongolia, China: Implications for the Final Orogenic Evolution in Southwestern Xing-Meng Orogenic Belt. Journal of Earth Science, 30(5): 977–995 doi: 10.1007/s12583-019-1015-5
    Liu, Q., Zhao, G. C., Han, Y. G., et al., 2017. Geochronology and Geochemistry of Permian to Early Triassic Granitoids in the Alxa Terrane: Constraints on the Final Closure of the Paleo-Asian Ocean. Lithosphere, 9(4): 665–680. https://doi.org/10.1130/L646.1
    Liu, X., Han, W., Wei, J. S., et al., 2017. Constraints of Apatite Fission Track on the Mesozoic Tectonic Activities in Xirehada Region, Yin'e Basin, Inner Mongolia. Acta Geologica Sinica, 91(10): 2185–2195. https://doi.org/10.3969/j.issn.0001-5717.2017.10.003 (in Chinese with English Abstract)
    Malusà, M. G., Fitzgerald, P. G., 2018. Fission-Track Thermochronology and Its Application to Geology. Springer
    Meng, Q. R., 2003. What Drove Late Mesozoic Extension of the Northern China-Mongolia Tract? Tectonophysics, 369(3/4): 155–174. https://doi.org/10.1016/S0040-1951(03)00195-1
    Meng, Q. R., Hu, J. M., Jin, J. Q., et al., 2003. Tectonics of the Late Mesozoic Wide Extensional Basin System in the China-Mongolia Border Region. Basin Research, 15(3): 397–415. https://doi.org/10.1046/j.1365-2117.2003.00209.x
    Metcalf, J. R., Fitzgerald, P. G., Baldwin, S. L., et al., 2009. Thermochronology of a Convergent Orogen: Constraints on the Timing of Thrust Faulting and Subsequent Exhumation of the Maladeta Pluton in the Central Pyrenean Axial Zone. Earth and Planetary Science Letters, 287(3/4): 488–503. https://doi.org/10.1016/j.epsl.2009.08.036
    Pang, J. Z., Yu, J., Zheng, D., et al., 2019. Constraints of New Apatite Fission-Track Ages on the Tectonic Pattern and Geomorphic Development of the Northern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 181: 103909. https://doi.org/10.1016/j.jseaes.2019.103909
    Peng, H., Wang, J. Q., Liu, C. Y., et al., 2019. Thermochronological Constraints on the Meso-Cenozoic Tectonic Evolution of the Haiyuan-Liupanshan Region, Northeastern Tibetan Plateau. Journal of Asian Earth Sciences, 183: 103966. https://doi.org/10.1016/j.jseaes.2019.103966
    Peng, H., Wang, J. Q., Zattin, M., et al., 2018. Late Triassic-Early Jurassic Uplifting in Eastern Qilian Mountain and Its Geological Significance: Evidence from Apatite Fission Track Thermochronology. Earth Science, 43(6): 1983–1996. https://doi.org/10.3799/dqkx.2018.608 (in Chinese with English Abstract)
    Qi, K., Ren, Z. L., Cui, J. P., et al., 2018. Thermal History Reconstruction of Mesozoic Source Rock in Western of Suhongtu Depression, Inner Mongolia, Northern China. Earth Science, 43(06): 1957–1971. https://doi.org/10.3799/dqkx.2018.594 (in Chinese with English Abstract)
    Ren, J. Y., Tamaki, K., Li, S., et al., 2002. Late Mesozoic and Cenozoic Rifting and Its Dynamic Setting in Eastern China and Adjacent Areas. Tectonophysics, 344(3/4): 175–205. https://doi.org/10.1016/S0040-1951(01)00271-2
    Shi, G. Z., Liang, C., Wang, H., et al., 2019. Superimposed Deformation of the Solonker Belt and nearby Regions in Western Inner Mongolia, China. Geological Magazine, 156(5): 811–832. https://doi.org/10.1017/S0016756818000183
    Shi, X. J., Wang, T., Zhang, L., et al., 2014. Timing, Petrogenesis and Tectonic Setting of the Late Paleozoic Gabbro-Granodiorite-Granite Intrusions in the Shalazhashan of Northern Alxa: Constraints on the Southernmost Boundary of the Central Asian Orogenic Belt. Lithos, 208/209: 158–177. https://doi.org/10.1016/j.lithos.2014.08.024
    Sobel, E. R., Arnaud, N., Jolivet, M., et al., 2001. Jurassic to Cenozoic Exhumation History of the Altyn Tagh Range, Northwest China, Constrained by 40Ar/39Ar and Apatite Fission Track Thermochronology. Memoir of the Geological Society of America, 194: 247–267. https://doi.org/10.1130/0-8137-1194-0.247
    Song, D. F., Glorie, S., Xiao, W. J., et al., 2018. Song, D. F., et al., 2018. Tectono-Thermal Evolution of the Southwestern Alxa Tectonic Belt, NW China: Constrained by Apatite U-Pb and Fission Track Thermochronology. Tectonophysics, 722: 577–594. https://doi.org/10.1016/j.tecto.2017.11.029
    Stewart, R. J., Brandon, M. T., 2004. Detrital-Zircon Fission-Track Ages for the "Hoh Formation": Implications for Late Cenozoic Evolution of the Cascadia Subduction Wedge. Geological Society of America Bulletin, 116(1): 60–75. https://doi.org/10.1130/b22101.1
    Tao, N., Li, Z. X., Danišík, M., et al., 2019. Post-250 Ma Thermal Evolution of the Central Cathaysia Block (SE China) in Response to Flat-Slab Subduction at the Proto-Western Pacific Margin. Gondwana Research, 75: 1–15. https://doi.org/10.1016/j.gr.2019.03.019
    Tapponnier, P., Peltzer, G., Le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611. https://doi.org/10.1130/0091-7613(1982)10611:petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10611:petian>2.0.co;2
    Tian, Z. H., Xiao, W. J., Zhang, Z. Y., et al., 2016. Fisson-Track Constrains on Superposed Folding in the Beishan Orogenic Belt, Southernmost Altaids. Geoscience Frontiers, 7(2): 181–196. https://doi.org/10.1016/j.gsf.2015.11.007
    Vassallo, R., Jolivet, M., Ritz, J. F., et al., 2007. Uplift Age and Rates of the Gurvan Bogd System (Gobi-Altay) by Apatite Fission Track Analysis. Earth and Planetary Science Letters, 259(3/4): 333–346. https://doi.org/10.1016/j.epsl.2007.04.047
    Vermeesch, P., 2009. RadialPlotter: A Java Application for Fission Track, Luminescence and Other Radial Plots. Radiation Measurements, 44(4): 409–410. https://doi.org/10.1016/j.radmeas.2009.05.003
    Wang, Q. C., Li, S. J., Du, Z. L., 2009. Differential Uplift of the Chinese Tianshan since the Cretaceous: Constraints from Sedimentary Petrography and Apatite Fission-Track Dating. International Journal of Earth Sciences, 98(6): 1341–1363. https://doi.org/10.1007/s00531-009-0436-2
    Wang, T., 1990. Formation and Evolution of Badain Jirin Sandy Desert, China. Journal of Desert Research, 10(1): 29–40 (in Chinese with English Abstract)
    Wang, X., Zattin, M., Li, J., et al., 2013. Cenozoic Tectonic Uplift History of Western Qinling: Evidence from Sedimentary and Fission-Track Data. Journal of Earth Science, 24(4): 491–505. https://doi.org/10.1007/s12583-013-0345-y
    Wilde, S. A., Zhou, J. B., 2015. The Late Paleozoic to Mesozoic Evolution of the Eastern Margin of the Central Asian Orogenic Belt in China. Journal of Asian Earth Sciences, 113: 909–921. https://doi.org/10.1016/j.jseaes.2015.05.005
    Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-76492006-022
    Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316–1341. https://doi.org/10.1016/j.gr.2012.01.012
    Xiao, W. J., Windley, B. F., Han, C., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94–128. https://doi.org/10.1016/j.earscirev.2017.09.020
    Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069. https://doi.org/10.1029/2002TC001484
    Xu, W., Wei, J., Han, W., et al., 2018. A Preliminary Study of the Structure and Reformation of the Permian and Carboniferous Strata in Yingen-Ejin Basin and Its Periphery. Geological Bulletin of China, 37(1): 132–143. https://doi.org/10.3969/j.issn.1671-2552.2018.01.014 (in Chinese with English Abstract)
    Yang, Y. T., Guo, Z. X., Song, C. C., et al., 2015. A Short-Lived but Significant Mongol-Okhotsk Collisional Orogeny in Latest Jurassic-Earliest Cretaceous. Gondwana Research, 28(3): 1096–1116. https://doi.org/10.1016/j.gr.2014.09.010
    Yang, Z., Ratschbacher, L., Jonckheere, R., et al., 2013. Late-Stage Foreland Growth of China's Largest Orogens (Qinling, Tibet): Evidence from the Hannan-Micang Crystalline Massifs and the Northern Sichuan Basin, Central China. Lithosphere, 5(4): 420–437. https://doi.org/10.1130/L260.1
    Yang, Z., Shen, C. B., Ratschbacher, L., et al., 2017. Sichuan Basin and Beyond: Eastward Foreland Growth of the Tibetan Plateau from an Integration of Late Cretaceous–Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 122(6): 4712–4740. https://doi.org/10.1002/2016jb013751
    Yin, A., 2010. Cenozoic Tectonic Evolution of Asia: A Preliminary Synthesis. Tectonophysics, 488(1/2/3/4): 293–325. https://doi.org/10.1016/j.tecto.2009.06.002
    Yin, J. Y., Wen, C., Hodges, K. V., et al., 2018. The Thermal Evolution of Chinese Central Tianshan and Its Implications: Insights from Multi-Method Chronometry. Tectonophysics, 722: 536–548. https://doi.org/10.1016/j.tecto.2017.11.037
    Yu, Q., Ren, Z. L., Li, R. X., et al., 2019. Meso-Cenozoic Tectonothermal History of Permian Strata, Southwestern Weibei Uplift: Insights from Thermochronology and Geothermometry. Acta Geologica Sinica (English Edition), 93(6): 1647–1661. https://doi.org/10.1111/1755-6724.14367
    Yuan, D. Y., Ge, W. P., Chen, Z. W., et al., 2013. The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics: A Review of Recent Studies. Tectonics, 32(5): 1358–1370. https://doi.org/10.1002/tect.20081
    Yue, Y. J., Liou, J. G., 1999. Two-Stage Evolution Model for the Altyn Tagh Fault, China. Geology, 27(3): 227. https://doi.org/10.1130/0091-7613(1999)0270227:tsemft>2.3.co;2 doi: 10.1130/0091-7613(1999)0270227:tsemft>2.3.co;2
    Zattin, M., Stefani, C., Martin, S., 2003. Detrital Fission-Track Analysis and Sedimentary Petrofacies as Keys of Alpine Exhumation: The Example of the Venetian Foreland (European Southern Alps, Italy). Journal of Sedimentary Research, 73(6): 1051–1061. https://doi.org/10.1306/051403731051
    Zattin, M., Wang, X. X., 2019. Exhumation of the Western Qinling Mountain Range and the Building of the Northeastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 177: 307–313. https://doi.org/10.1016/j.jseaes.2019.04.002
    Zhang, A., 2003. Structural Characteristics and Relation with the Petroleum and Gas in Chagan Depression of Yin-E Basin of Inner Mongolia, Beijing: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract)
    Zhang, B. H., Zhang, J., Wang, Y. N., et al., 2017. Late Mesozoic–Cenozoic Exhumation of the Northern Hexi Corridor: Constrained by Apatite Fission Track Ages of the Longshoushan. Acta Geologica Sinica (English Edition), 91(5): 1624–1643. https://doi.org/10.1111/1755-6724.13402
    Zhang, J., Dickson, C., Cheng, H. Y., 2010. Sedimentary Characteristics of Cenozoic Strata in Central-Southern Ningxia, NW China: Implications for the Evolution of the NE Qinghai-Tibetan Plateau. Journal of Asian Earth Sciences, 39(6): 740–759. https://doi.org/10.1016/j.jseaes.2010.05.008
    Zhang, J., Li, J., Li, Y., et al., 2014. Mesozoic–Cenozoic Multi-Stage Intraplate Deformation Events in the Langshan Region and Their Tectonic Implications. Acta Geologica Sinica (English Edition), 88(1): 78–102. http://10.3969/j.issn.1000-9515.2014.01.010 doi: 10.3969/j.issn.1000-9515.2014.01.010
    Zhang, S. H., Zhao, Y., Kröner, A., et al., 2009. Early Permian Plutons from the Northern North China Block: Constraints on Continental Arc Evolution and Convergent Margin Magmatism Related to the Central Asian Orogenic Belt. International Journal of Earth Sciences, 98(6): 1441–1467. https://doi.org/10.1007/s00531-008-0368-2
    Zhang, S., 2019. Geological Characteristics and Later Reformation of the Carboniferous–Permian Basin in Yingen-Ejina Area, NW China: [Dissertation]. Northwest University, Xi'an (in Chinese with English Abstract)
    Zhang, W., Wu, T. R., Feng, J. C., et al., 2013. Time Constraints for the Closing of the Paleo-Asian Ocean in the Northern Alxa Region: Evidence from Wuliji Granites. Science China Earth Sciences, 56(1): 153–164. https://doi.org/10.1007/s11430-012-4435-y
    Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186: 262–286. https://doi.org/10.1016/j.earscirev.2018.10.003
    Zhao, H. G., Liu, C. Y., Wang, F., et al., 2007. Uplift and Evolution of Helan Mountain. Science in China Series D: Earth Sciences, 50(2): 217–226. https://doi.org/10.1007/s11430-007-6010-5
    Zhao, X. C., Liu, C. Y., Wang, J. Q., et al., 2020a. Geochemistry, Geochronology and Hf Isotope of Granitoids in the Northern Alxa Region: Implications for the Late Paleozoic Tectonic Evolution of the Central Asian Orogenic Belt. Geoscience Frontiers, 11(5): 1711–1725. https://doi.org/10.1016/j.gsf.2020.01.009
    Zhao, X. C., Liu, C. Y., Wang, J. Q., et al., 2020b. Provenance Analyses of Lower Cretaceous Strata in the Liupanshan Basin: From Paleocurrents Indicators, Conglomerate Clast Compositions, and Zircon U-Pb Geochronology. Journal of Earth Science, 31(4): 757–771. https://doi.org/10.1007/s12583-020-1324-8
    Zhao, Z., Li, J., Dang, Z., et al., 2016. TIMS zircon U-Pb isotopic dating of Salazha Mountain granites from the North Margin of Alxa, Inner Mongolia, and Its tectonic implications. Geological Bulletin of China, 35(4): 599-604. https://doi.org/10.3969/j.issn.1671-2552.2016.04.016 (in Chinese with English Abstract)
    Zheng, R. G., Wu, T. R., Zhang, W., et al., 2014. Late Paleozoic Subduction System in the Northern Margin of the Alxa Block, Altaids: Geochronological and Geochemical Evidences from Ophiolites. Gondwana Research, 25(2): 842–858. https://doi.org/10.1016/j.gr.2013.05.011
    Zheng, Y., Zhang, Q., Wang, Y., et al., 1996. Great Jurassic Thrust Sheets in Beishan (North Mountains)—Gobi Areas of China and Southern Mongolia. Journal of Structural Geology, 18(9): 1111–1126. https://doi.org/10.1016/0191-8141(96)00038-7
    Zhong, F., Zhong, J., Wang, Y., et al., 2014. Geochemistry Characteristics and Origin of Early Cretaceous Volcanic Rocks in Suhongtu Depression, Inner Mongolia, China. Acta Mineralogica Sinica, 34(01): 107–116 (in Chinese with English Abstract)
    Zuo, Y., Qiu, N. S., Hao, Q. Q., et al., 2015. Geothermal Regime and Source Rock Thermal Evolution in the Chagan Sag, Inner Mongolia, Northern China. Marine and Petroleum Geology, 59: 245–267. https://doi.org/10.1016/j.marpetgeo.2014.09.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(270) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return