Citation: | Mohamed K. Salah, Hammad Tariq Janjuhah, Josep Sanjuan. Analysis and Characterization of Pore System and Grain Sizes of Carbonate Rocks from Southern Lebanon. Journal of Earth Science, 2023, 34(1): 101-121. doi: 10.1007/s12583-020-1057-8 |
Carbonate rocks are common in many parts of the world, including the Eastern Mediterranean, where they host significant groundwater supplies and are widely used as building and ornamental stones. The porosity of carbonate rocks plays a critical role in fluid storage and retrieval. The pore structure connectivity, in particular, controls many properties of geological formations, as well as the relationships between the properties of individual minerals and the bulk properties of the rock. To study the relationships between porosity, rock properties, pore structure, pore size, and their impact on reservoir characteristics, 46 carbonate rock samples were collected from four stratigraphic sections exposed near Sidon, South Lebanon. The studied carbonate rocks are related to marine deposits of different ages (e.g., Upper Cretaceous, Eocene, and Upper Miocene). In order to understand the pore connectivity, the MICP (mercury injection capillary pressure) technique was conducted on ten representative samples. Results from the SEM analysis indicate the dominance of very fine and fine pore sizes, with various categories ranging in diameter from 0.1 to 10 μm. The MICP data revealed that the pore throat radii vary widely from 0.001 to 1.4 μm, and that all samples are dominated by micropore throats. The grain size analysis indicated that the studied rocks have significant amounts of silt- and clay-size grains with respect to the coarser 'sand-size' particles, suggesting a high proportion of microporosity. Obtained results, such as the poorly-sorted nature of grains, high microporosity, and the high percentage of micropore throats, justify the observed low mean hydraulic radius, the high entry pressure, and the very low permeability of the studied samples. These results suggest that the carbonate rocks near Sidon (south of Lebanon) are possibly classified as non-reservoir facies.
Adamson, A. W., Gast A. P., 1997. Physical Chemistry of Surfaces: 6th Edition. John Wiley & Sons Inc., New York. 120–180 |
Ahr, W. M., 1989. Early Diagenetic Microporosity in the Cotton Valley Limestone of East Texas. Sedimentary Geology, 63(3/4): 275–292. https://doi.org/10.1016/0037-0738(89)90136-X |
Al-Aasm, I. S., Azmy, K. K., 1996. Diagenesis and Evolution of Microporosity of Middle–Upper Devonian Kee Scarp Reefs, Norman Wells, Northwest Territories, Canada: Petrographic and Chemical Evidence. AAPG Bulletin, (1): 82–99. https://doi.org/10.1306/64ed8750-1724-11d7-8645000102c1865d |
Al-Gharbi, M. S., Blunt, M. J., 2005. Dynamic Network Modelling of Two-Phase Drainage in Porous Media. Physical Review E: Covering Statistical, Nonlinear, Biological, and Soft Matter Physics, 71(2): 016308. https://doi.org/10.1103/PhysRevE.71.016308 |
Al-Kharusi, A. S., Blunt, M. J., 2007. Network Extraction from Sandstone and Carbonate Pore Space Images. Journal of Petroleum Science and Engineering, 56(4): 219–231. https://doi.org/10.1016/j.petrol. 2006.09.003 doi: 10.1016/j.petrol.2006.09.003 |
Amaefule, J. O., Altunbay, M., Tiab, D., et al., 1993. Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, October 3–6, 1993. Houston, Texas. SPE-26436-MS. https://doi.org/10.2118/26436-MS |
Anovitz, L. M., Cole, D. R., 2015. Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1): 61–164. https://doi.org/10.2138/rmg.2015.80.04 |
Anselmetti, F. S., Eberli, G. P., 1999. The Velocity-Deviation Log: A Tool to Predict Pore Type and Permeability Trends in Carbonate Drill Holes from Sonic and Porosity or Density Logs. AAPG Bulletin, 83 (3): 450–466. https://doi.org/10.1306/00aa9bce-1730-11d7-8645000102c1865d |
Anselmetti, F. S., Eberli, G. P., 1993. Controls on Sonic Velocity in Carbonates. Pure and Applied Geophysics, 141(2): 287–323. https://doi.org/10.1007/BF00998333 |
Baechle, G. T., Weger, R., Eberli, G. P., et al., 2004. The Role of Macroporosity and Microporosity in Constraining Uncertainties and in Relating Velocity to Permeability in Carbonate Rocks. Society of Exploration Geophysicists Technical Program Expanded Abstracts 2004. 1662–1665 |
Bailey, S., 2009. Closure and Compressibility Corrections to Capillary Pressure Data in Shales. Oral Presentation Given at the DWLS 2009 Fall Workshop, beyond the Basics of Capillary Pressure: Advanced Topics and Emerging Applications. Colorado School of Mines, USA |
Basan, P. B., Lowden, B. D., Whattler, P. R., et al., 1997. Pore-Size Data in Petrophysics: A Perspective on the Measurement of Pore Geometry. Geological Society, London, Special Publications, 122(1): 47–67. https://doi.org/10.1144/gsl.sp.1997.122.01.05 |
BouDagher-Fadel, M., Clark, G. N., 2006. Stratigraphy, Paleoenvironment and Paleogeography of Maritime Lebanon: A Key to Eastern Mediterranean Cenozoic History. Stratigraphy, 3(2): 81–118 |
Burchette, T. P., 2012. Carbonate Rocks and Petroleum Reservoirs: A Geological Perspective from the Industry. Geological Society, London, Special Publications, 370(1): 17–37. https://doi.org/10.1144/sp370.14 |
Byrnes, A. P., Cluff, R. M., Webb, J. C., 2009. Analysis of Critical Permeability, Capillary Pressure, and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U. S. Basins. Final Report Submitted by Kansas Geological Survey for United States Department of Energy (DOE) Contract DE-FC26-05NT42660, Accessed January 2010. https://www.kgs.ku.edu/mesaverde/index.html |
Cantrell, D. L., Hagerty, R. M., 1999. Microporosity in Arab Formation Carbonates, Saudi Arabia. GeoArabia, 4(2): 129–154. doi: 10.2113/geoarabia0402129 |
Clark, B., Kleinberg, R, 2002. Physics in Oil Exploration. Physics Today, 55(4): 48–53. https://doi.org/10.1063/1.1480782 |
Comisky, J. T., Santiago, M., McCollom, B., et al., 2011. Sample Size Effects on the Application of Mercury Injection Capillary Pressure for Determining the Storage Capacity of Tight Gas and Oil Shales. In Proceedings of the Canadian Unconventional Resources Conference, November 15–17, 2011. Calgary, Alberta, Canada. SPE-149432-MS. https://doi.org/10.2118/149432-MS |
Deville de Periere, M., Durlet, C., Vennin, E., et al., 2011. Morphometry of Micrite Particles in Cretaceous Microporous Limestones of the Middle East: Influence on Reservoir Properties. Marine and Petroleum Geology, 28(9): 1727–1750. https://doi.org/10.1016/j.marpetgeo. 2011.05.002 doi: 10.1016/j.marpetgeo.2011.05.002 |
Dewit, J., Huysmans, M., Muchez, P., et al., 2012. Reservoir Characteristics of Fault-Controlled Hydrothermal Dolomite Bodies: Ramales Platform Case Study. Geological Society, London, Special Publications, 370(1): 83–109. https://doi.org/10.1144/sp370.1 |
Dillinger, A., Esteban, L., 2014. Experimental Evaluation of Reservoir Quality in Mesozoic Formations of the Perth Basin (Western Australia) by Using a Laboratory Low Field Nuclear Magnetic Resonance. Marine and Petroleum Geology, 57(2): 455–469. https://doi.org/10.1016/j.marpetgeo.2014.06.010 |
Dubertret, L., 1945–1953. Carte Géologique au 50 000 de la Syrie et du Liban. 21 Sheets and Notes. Damas and Beirut, Ministères de Traveaux Publiques |
Dubertret, L., 1955. Carte Géologique du Liban 1 : 200 000. Beirut, Lebanon |
Dürrast, H., Siegesmund, S., 1999. Correlation between Rock Fabrics and Physical Properties of Carbonate Reservoir Rocks. International Journal of Earth Sciences, 88(3): 392–408. https://doi.org/10.1007/s005310050274 |
Ehrenberg, S. N., Nadeau, P. H., 2005. Sandstone vs Carbonate Petroleum Reservoirs: A Global Perspective on Porosity-Depth and Porosity-Permeability Relationships. AAPG Bulletin, 89(4): 435–445. https://doi.org/10.1306/11230404071 |
Ehrenberg, S. N., Walderhaug, O., 2015. Preferential Calcite Cementation of Macropores in Microporous Limestones. Journal of Sedimentary Research, 85(7): 780–793. https://doi.org/10.2110/jsr.2015.52 |
Folk, R. L., 1959. Practical Petrographic Classification of Limestones. AAPG Bulletin, 43(1): 1–38. https://doi.org/10.1306/0bda5c36-16bd-11d7-8645000102c1865d |
Gao, Z. Y., Hu, Q. H., 2013. Estimating Permeability Using Median Pore-Throat Radius Obtained from Mercury Intrusion Porosimetry. Journal of Geophysics and Engineering, 10(2): 025014. https://doi.org/10.1088/1742-2132/10/2/025014 |
Gao, Z. Y., Yang, X. B., Hu, C. H., et al., 2019. Characterizing the Pore Structure of Low Permeability Eocene Liushagang Formation Reservoir Rocks from Beibuwan Basin in Northern South China Sea. Marine and Petroleum Geology, 99: 107–121. https://doi.org/10.1016/j.marpetgeo.2018.10.005 |
Hollis, C., Vahrenkamp, V., Tull, S., et al., 2010. Pore System Characterisation in Heterogeneous Carbonates: An Alternative Approach to Widely-Used Rock-Typing Methodologies. Marine and Petroleum Geology, 27(4): 772–793. https://doi.org/10.1016/j.marpetgeo.2009.12.002 |
Hosseini, M., Tavakoli, V., Nazemi, M., 2018. The Effect of Heterogeneity on NMR Derived Capillary Pressure Curves, Case Study of Dariyan Tight Carbonate Reservoir in the Central Persian Gulf. Journal of Petroleum Science and Engineering, 171: 1113–1122. https://doi.org/10.1016/j.petrol.2018.08.054 |
Hu, X. T., Huang, S., 2016. Physical Properties of Reservoir Rocks. Physics of Petroleum Reservoirs. Springer, Berlin, Heidelberg. 7–164. https://doi.org/10.1007/978-3-662-53284-3_2 |
Janjuhah, H. T., Alansari, A., Gámez Vintaned, J. A., 2019. Quantification of Microporosity and Its Effect on Permeability and Acoustic Velocity in Miocene Carbonates, Central Luconia, Offshore Sarawak, Malaysia. Journal of Petroleum Science and Engineering, 175: 108–119. https://doi.org/10.1016/j.petrol.2018.12.035 |
Janjuhah, H. T., Alansari, A., Ghosh, D. P., et al., 2018. New Approach towards the Classification of Microporosity in Miocene Carbonate Rocks, Central Luconia, Offshore Sarawak, Malaysia. Journal of Natural Gas Geoscience, 3(3): 119–133. https://doi.org/10.1016/j.jnggs.2018.05.001 |
Jaya, I., Sudaryanto, A., Widarsono, B., 2005. Permeability Prediction Using Pore Throat and Rock Fabric: A Model from Indonesian Reservoirs. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, April 5–7, 2005. Jakarta, Indonesia. SPE-93363-MS. https://doi.org/10.2118/93363-MS |
Jones, S. C., 1972. A Rapid Accurate Unsteady-State Klinkenberg Permeameter. Society of Petroleum Engineers Journal, 12(5): 383–397. https://doi.org/10.2118/3535-pa |
Kaczmarek, S. E., Fullmer, S. M., Hasiuk, F. J., 2015. A Universal Classification Scheme for the Microcrystals that Host Limestone Microporosity. Journal of Sedimentary Research, 85(10): 1197–1212. https://doi.org/10.2110/jsr.2015.79 |
Kassab, M. A., Abuseda, H. H., El Sayed, N. A., et al., 2016. Petrographical and Petrophysical Integrated Studies, Jurassic Rock Samples, North Sinai, Egypt. Arabian Journal of Geosciences, 9(2): 99. https://doi.org/10.1007/s12517-015-2146-3 |
Katz, A. J., Thompson, A. H., 1985. Fractal Sandstone Pores: Implications for Conductivity and Pore Formation. Physical Review Letters, 54(12): 1325–1328. https://doi.org/10.1103/PhysRevLett.54.1325 |
Klaver, J., Hemes, S., Houben, M., et al., 2015. The Connectivity of Pore Space in Mudstones: Insights from High-Pressure Wood?s Metal Injection, BIB-SEM Imaging, and Mercury Intrusion Porosimetry. Geofluids, 15(4): 577–591. https://doi.org/10.1111/gfl.12128 |
Labani, M. M., Rezaee, R., Saeedi, A., et al., 2013. Evaluation of Pore Size Spectrum of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion and Mercury Porosimetry: A Case Study from the Perth and Canning Basins, Western Australia. Journal of Petroleum Science and Engineering, 112: 7–16. https://doi.org/10.1016/j.petrol.2013.11.022 |
Lafage, S. I., 2008. An Alternative to the Winland R35 Method for Determining Carbonate Reservoir Quality: [Dissertation]. Texas A & M University, Texas. 1–102 |
Lai, J., Wang, G. W., Chen, M., et al., 2013. Pore Structures Evaluation of Low Permeability Clastic Reservoirs Based on Petrophysical Facies: A Case Study on Chang 8 Reservoir in the Jiyuan Region, Ordos Basin. Petroleum Exploration and Development, 40(5): 606–614. https://doi.org/10.1016/S1876-3804(13)60079-8 |
Lapponi, F., Casini, G., Sharp, I., et al., 2011. From Outcrop to 3D Modelling: A Case Study of a Dolomitized Carbonate Reservoir, Zagros Mountains, Iran. Petroleum Geoscience, 17(3): 283–307. https://doi.org/10.1144/1354-079310-040 |
León y León, C. A., 1998. New Perspectives in Mercury Porosimetry. Advances in Colloid and Interface Science, 76/77: 341–372. https://doi.org/10.1016/S0001-8686(98)00052-9 |
Li, J. Q., Zhang, P. F., Lu, S. F., et al., 2019. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 30(4): 823–833. https://doi.org/10.1007/s12583-018-0835-z |
Lima Neto, I. A., Misságia, R. M., Ceia, M. A., et al., 2015. Evaluation of Carbonate Pore System under Texture Control for Prediction of Microporosity Aspect Ratio and Shear Wave Velocity. Sedimentary Geology, 323: 43–65. https://doi.org/10.1016/j.sedgeo.2015.04.011 |
Liu, J. Y., Qiu, Z. S., Huang, W., et al., 2014. Nano-Pore Structure Characterization of Shales Using Gas Adsorption and Mercury Intrusion Techniques. Journal of Chemical and Pharmaceutical Research, 6(4): 850–857. |
Lucia, F. J., 1995. Rock-Fabric/Petrophysical Classification of Carbonate Pore Space for Reservoir Characterization. AAPG Bulletin, 79(9): 1275–1300. https://doi.org/10.1306/7834d4a4-1721-11d7-8645000102c1865d |
Lucia, F. J., Loucks, R. G., 2013. Micropores in Carbonate Mud: Early Development and Petrophysics. Gulf Coast Association of Geological Socities, 2: 1–10 |
Luo, M. G., 1989. A Study of the Capillary Curve of the Thick Conglomeratic Reservoir in the 8th Block, Karamay Oil Field, Xinjiang, by X2(n) Distribution and Its Geological Significance. Petroleum Expoloration and Development, 16(1): 73–83 (in Chinese with English Abstract) |
Mao, Z. Q., Xiao, L., Wang, Z. N., et al., 2013. Estimation of Permeability by Integrating Nuclear Magnetic Resonance (NMR) Logs with Mercury Injection Capillary Pressure (MICP) Data in Tight Gas Sands. Applied Magnetic Resonance, 44(4): 449–468. https://doi.org/10.1007/s00723-012-0384-z |
Marschall, D., Gardner, J. S., Mardon, D., et al., 1995. Method for Correlating NMR Relaxometry and Mercury Injection Data. Paper SCA1995-11, Proc. Int. Symp. Soc. Core Analysts, San Francisco, California, USA, 9511: 40 |
Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. Cambridge University Press, Cambridge |
Medina, C. R., Mastalerz, M., Rupp, J. A., 2017. Characterization of Porosity and Pore-Size Distribution Using Multiple Analytical Tools: Implications for Carbonate Reservoir Characterization in Geologic Storage of CO2. Environmental Geosciences, 24(1): 51–72. https://doi.org/10.1306/eg.02071716010 |
Medina, C. R., Mastalerz, M., Rupp, J. A., 2018. Pore System Characterization of Cambrian-Ordovician Carbonates Using a New Mercury Porosimetry-Based Petrofacies Classification System: Application to Carbon Sequestration Reservoirs. Greenhouse Gases: Science and Technology, 8(5): 932–953. https://doi.org/10.1002/ghg.1806 |
Michels, K. H., 2000. Inferring Maximum Geostrophic Current Velocities in the Norwegian-Greenland Sea from Settling-Velocity Measurements of Sediment Surface Samples: Methods, Application, and Results. Journal of Sedimentary Research, 70(5): 1036–1050. https://doi.org/10.1306/101599701036 |
Morriss, C., Macinnis, J., Freedman, R., et al., 1993. Field Test of an Experimental Pulsed Nuclear Magnetism Tool. SPWLA 34th Annual Logging Symposium June 13–16, Calgary, Alberta, Canada, https://onepetro.org/SPWLAALS/proceedings-abstract/SPWLA-1993 |
Moshier, S. O., 1989. Development of Microporosity in a Micritic Limestone Reservoir, Lower Cretaceous, Middle East. Sedimentary Geology, 63(3/4): 217–240. https://doi.org/10.1016/0037-0738(89)90133-4 |
Müller, C., Higazi, F., Hamdan, W., et al., 2010. Revised Stratigraphy of the Upper Cretaceous and Cenozoic Series of Lebanon Based on Nannofossils. Geological Society, London, Special Publications, 341(1): 287–303. https://doi.org/10.1144/sp341.14 |
Müller-Huber, E., Börner, F., Börner, J. H., et al., 2018. Combined Interpretation of NMR, MICP, and SIP Measurements on Mud-Dominated and Grain-Dominated Carbonate Rocks. Journal of Applied Geophysics, 159: 228–240. https://doi.org/10.1016/j.jappgeo.2018.08.011 |
Munnecke, A., Westphal, H., Reijmer, J. J. G., et al., 2008. Microspar Development during Early Marine Burial Diagenesis: A Comparison of Pliocene Carbonates from the Bahamas with Silurian Limestones from Gotland (Sweden). Sedimentology, 44(6): 977–990. https://doi.org/10.1111/j.1365-3091.1997.tb02173.x |
Nabawy, B. S., Al-Azazi, N. A. S. A, 2015. Reservoir Zonation and Discrimination Using the Routine Core Analyses Data: The Upper Jurassic Sab'atayn Sandstones as a Case Study, Sab'atayn Basin, Yemen. Arabian Journal of Geosciences, 8(8): 5511–5530. https://doi.org/10.1007/s12517-014-1632-3 |
Nabawy, B. S., Barakat, M. K., 2017. Formation Evaluation Using Conventional and Special Core Analyses: Belayim Formation as a Case Study, Gulf of Suez, Egypt. Arabian Journal of Geosciences, 10(2): 25. https://doi.org/10.1007/s12517-016-2796-9 |
Nabawy, B. S., Rashed, M. A., Mansour, A. S., et al., 2018. Petrophysical and Microfacies Analysis as a Tool for Reservoir Rock Typing and Modeling: Rudeis Formation, Off-Shore October Oil Field, Sinai. Marine and Petroleum Geology, 97: 260–276. https://doi.org/10.1016/j.marpetgeo.2018.07.011 |
Nelson, P. H., 1994. Permeability-Porosity Relationships in Sedimentary Rocks. Log Analyst, 35(3): 38–62. |
Netto, A. S. T., 1993. Pore-Size Distribution in Sandstones: Geologic Note. AAPG Bulletin, 77(6): 1101–1104. https://doi.org/10.1306/bdff8df8-1718-11d7-8645000102c1865d |
Nooruddin, H. A., Hossain, M. E., Al-Yousef, H., et al., 2014. Comparison of Permeability Models Using Mercury Injection Capillary Pressure Data on Carbonate Rock Samples. Journal of Petroleum Science and Engineering, 121: 9–22. https://doi.org/10.1016/j.petrol.2014.06.032 |
Norbisrath, J. H., Eberli, G. P., Laurich, B., et al., 2015. Electrical and Fluid Flow Properties of Carbonate Microporosity Types from Multiscale Digital Image Analysis and Mercury Injection. AAPG Bulletin, 99(11): 2077–2098. https://doi.org/10.1306/07061514205 |
Nurmi, R., Standen, E., 1997. Carbonates: The Inside Story. Middle East Well Evaluation Review, 18: 28–41 |
Pentecost, A., 2005. Travertine. Springer Nature, Berlin, Heidelberg |
Pittman, E. D., 1971. Microporosity in Carbonate Rocks: Geological Notes. AAPG Bulletin, 55: 1873–1878. https://doi.org/10.1306/819a3db2-16c5-11d7-8645000102c1865d |
Purcell, W. R., 1949. Capillary Pressures―Their Measurement Using Mercury and the Calculation of Permeability Therefrom. Journal of Petroleum Technology, 1(2): 39–48. https://doi.org/10.2118/949039-g |
Rea, D. K., Hovan, S. A., 1995. Grain Size Distribution and Depositional Processes of the Mineral Component of Abyssal Sediments: Lessons from the North Pacific. Paleoceanography, 10(2): 251–258. |
Rezaee, R., Saeedi, A., Clennell, B., 2012. Tight Gas Sands Permeability Estimation from Mercury Injection Capillary Pressure and Nuclear Magnetic Resonance Data. Journal of Petroleum Science and Engineering, 88/89: 92–99. https://doi.org/10.1016/j.petrol.2011.12.014 |
Rushing, J. A., Newsham, K. E., Blasingame, T. A., 2008. Rock Typing—Keys to Understanding Productivity in Tight Gas Sands. In Proceedings of the SPE Unconventional Reservoirs Conference, February 10–12, 2008. Keystone, Colorado, USA. SPE-114164-MS. https://doi.org/10.2118/114164-MS |
Salah, M. K., Abd El-Aal, A. K., Abdel-Hameed, A. T., 2019. Influence of Depositional and Diagenetic Processes on the Petrophysical and Mechanical Properties of Lower Miocene Sandstones, Qattara Depression, Northwestern Egypt. Journal of Petroleum Science and Engineering, 177: 1114–1133. https://doi.org/10.1016/j.petrol. 2019.02.058 doi: 10.1016/j.petrol.2019.02.058 |
Salah, M. K., Alqudah, M., Abd El-Aal, A. K., et al., 2018. Effects of Porosity and Composition on Seismic Wave Velocities and Elastic Moduli of Lower Cretaceous Rocks, Central Lebanon. Acta Geophysica, 66(5): 867–894. https://doi.org/10.1007/s11600-018-0187-1 |
Salah, M. K., Alqudah, M., Monzer, A. J., et al., 2020. Petrophysical and Acoustic Characteristics of Jurassic and Cretaceous Rocks from Central Lebanon. Carbonates and Evaporites, 35(1): 12. https://doi.org/10.1007/s13146-019-00536-w |
Salah, M. K., Еl Ghandour, M. M., Abdеl-Hamееd, A. T., 2016. Еffеct of Diagеnеsis on thе Pеtrophysical Propеrtiеs of thе Miocеnе Rocks at thе Qattara Dеprеssion, North Wеstеrn Dеsеrt, Еgypt. Arabian Journal of Gеosciences, 9: 329. https://doi.org/10.1007/s12517-015-2275-8 |
Schlömer, S., Krooss, B. M., 1997. Experimental Characterisation of the Hydrocarbon Sealing Efficiency of Cap Rocks. Marine and Petroleum Geology, 14(5): 565–580. https://doi.org/10.1016/S0264-8172(97)00022-6 |
Schmitt, M., Fernandes, C. P., da Cunha Neto, J. A. B., et al., 2013. Characterization of Pore Systems in Seal Rocks Using Nitrogen Gas Adsorption Combined with Mercury Injection Capillary Pressure Techniques. Marine and Petroleum Geology, 39(1): 138–149. https://doi.org/10.1016/j.marpetgeo.2012.09.001 |
Schön, J. H., 2015. Physical Properties of Rocks―Fundamentals and Principles of Petrophysics: 2nd Edition. Elsevier, Amsterdam |
Shanley, K. W., Cluff, R. M., 2015. The Evolution of Pore-Scale Fluid-Saturation in Low-Permeability Sandstone Reservoirs. AAPG Bulletin, 99(10): 1957–1990. https://doi.org/10.1306/03041411168 |
Sigal, R. F., 2009. A Methodology for Blank and Conformance Corrections for High Pressure Mercury Porosimetry. Measurement Science and Technology, 20(4): 045108. https://doi.org/10.1088/0957-0233/20/4/045108 |
Skalinski, M., Kenter, J., 2013. Pore Typing Workflow for Complex Carbonate Systems. AAPG Annual Convention and Exhibition, Pittsburgh, Pennsylvania |
Sneider, R. M., 1987. Practical Petrophysics for Exploration and Development. AAPG Education Department Short Course Notes, Variously Paginated |
Soete, J., Kleipool, L. M., Claes, H., et al., 2015. Acoustic Properties in Travertines and Their Relation to Porosity and Pore Types. Marine and Petroleum Geology, 59: 320–335. https://doi.org/10.1016/j.marpetgeo.2014.09.004 |
Sun, P. K., Xu, H. M., Dou, Q. F., et al., 2015. Investigation of Pore-Type Heterogeneity and Its Inherent Genetic Mechanisms in Deeply Buried Carbonate Reservoirs Based on Some Analytical Methods of Rock Physics. Journal of Natural Gas Science and Engineering, 27: 385–398. https://doi.org/10.1016/j.jngse.2015.08.073 |
Swanson, B. F., 1981. A Simple Correlation between Permeabilities and Mercury Capillary Pressures. Journal of Petroleum Technology, 33(12): 2498–2504. https://doi.org/10.2118/8234-pa |
Swanson, B. F., 1985. Microporosity in Reservoir Rocks: Its Measurement and Influence on Electrical Resistivity. The Log Analyst, 26: 42–52 |
Theologou, P. N., Skalinski, M., Mallan, R. K., 2015. An MICP-Based Pore Typing Workflow―Core Scale to Log Scale. SPWLA 56th Annual Logging Symposium |
Thomeer, J. H. M., 1960. Introduction of a Pore Geometrical Factor Defined by the Capillary Pressure Curve. Journal of Petroleum Technology, 12(3): 73–77. https://doi.org/10.2118/1324-g |
Trentesaux, A., Recourt, P., Bout-Roumazeilles, V., et al., 2001. Carbonate Grain-Size Distribution in Hemipelagic Sediments from a Laser Particle Sizer. Journal of Sedimentary Research, 71(5): 858–862. https://doi.org/10.1306/2dc4096e-0e47-11d7-8643000102c1865d |
Urai, J., Nover, G., Zwach, C., et al., 2008. Transport Processes. In: Littke, R., Bayer, U., Gajewski, D., et al., eds., Dynamics of Complex Intracontinental Basins: The Central European Basin System. Springer-Verlag, Berlin. 367–388 |
Vavra, C. L., Kaldi, J. G., Sneider, R. M., 1992. Geological Applications of Capillary Pressure: A Review (1). AAPG Bulletin, 76(6): 840–850. https://doi.org/10.1306/bdff88f8-1718-11d7-8645000102c1865d |
Walley, C. D., 1997. The Lithostratigraphy of Lebanon: A Review. Lebanese Science Bulletin, 10: 81–108 |
Walley, C. D., 1998. Some Outstanding Issues in the Geology of Lebanon and Their Importance in the Tectonic Evolution of the Levantine Region. Tectonophysics, 298(1/2/3): 37–62. https://doi.org/10.1016/S0040-1951(98)00177-2 |
Wang, P. F., Jiang, Z. X., Yin, L. S., et al., 2017. Lithofacies Classification and Its Effect on Pore Structure of the Cambrian Marine Shale in the Upper Yangtze Platform, South China: Evidence from FE-SEM and Gas Adsorption Analysis. Journal of Petroleum Science and Engineering, 156: 307–321. https://doi.org/10.1016/j.petrol.2017.06.011 |
Wang, X. D., Yang, S. C., Zhao, Y. F., et al., 2018. Improved Pore Structure Prediction Based on MICP with a Data Mining and Machine Learning System Approach in Mesozoic Strata of Gaoqing Field, Jiyang Depression. Journal of Petroleum Science and Engineering, 171: 362–393. https://doi.org/10.1016/j.petrol.2018.07.057 |
Wardlaw, N. C., 1976. Pore Geometry of Carbonate Rocks as Revealed by Pore Casts and Capillary Pressure. AAPG Bulletin, 60(2): 245–257. https://doi.org/10.1306/83d922ad-16c7-11d7-8645000102c1865d |
Wardlaw, N. C., McKellar, M., 1981. Mercury Porosimetry and the Interpretation of Pore Geometry in Sedimentary Rocks and Artificial Models. Powder Technology, 29(1): 127–143. https://doi.org/10.1016/0032-5910(81)85011-5 |
Washburn, E. W., 1921. The Dynamics of Capillary Flow. Physical Review, 17(3): 273–283. https://doi.org/10.1103/physrev.17.273 |
Westphal, H., Surholt, I., Kiesl, C., et al., 2005. NMR Measurements in Carbonate Rocks: Problems and an Approach to a Solution. Pure and Applied Geophysics, 162(3): 549–570. https://doi.org/10.1007/s00024-004-2621-3 |
Wilson, M. E. J., 2002. Cenozoic Carbonates in Southeast Asia: Implications for Equatorial Carbonate Development. Sedimentary Geology, 147(3/4): 295–428. https://doi.org/10.1016/S0037-0738(01)00228-7 |
Wood, D. A., Hazra, B., 2017. Characterization of Organic-Rich Shales for Petroleum Exploration & Exploitation: A Review-Part 1: Bulk Properties, Multi-Scale Geometry and Gas Adsorption. Journal of Earth Science, 28(5): 739–757. https://doi.org/10.1007/s12583-017-0732-x |
Wu, Y., Fan, T. L., Zhang, J. C., et al., 2014. Characterization of the Upper Ordovician and Lower Silurian Marine Shale in Northwestern Guizhou Province of the Upper Yangtze Block, South China: Implication for Shale Gas Potential. Energy & Fuels, 28(6): 3679–3687. https://doi.org/10.1021/ef5004254 |
Xu, C. C., Torres-Verdín, C., 2013. Pore System Characterization and Petrophysical Rock Classification Using a Bimodal Gaussian Density Function. Mathematical Geosciences, 45(6): 753–771. https://doi.org/10.1007/s11004-013-9473-2 |
Yu, Y. X., Luo, X. R., Wang, Z. X., et al., 2019. A New Correction Method for Mercury Injection Capillary Pressure (MICP) to Characterize the Pore Structure of Shale. Journal of Natural Gas Science and Engineering, 68: 102896. https://doi.org/10.1016/j.jngse.2019.05.009 |
Zhang, N., He, M. C., Zhang, B., et al., 2016. Pore Structure Characteristics and Permeability of Deep Sedimentary Rocks Determined by Mercury Intrusion Porosimetry. Journal of Earth Science, 27(4): 670–676. https://doi.org/10.1007/s12583-016-0662-z |
Zou, C. N., Zhu, R. K., Liu, K. Y., et al., 2012. Tight Gas Sandstone Reservoirs in China: Characteristics and Recognition Criteria. Journal of Petroleum Science and Engineering, 88/89: 82–91. https://doi.org/10.1016/j.petrol.2012.02.001 |