Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 3
Jun 2023
Turn off MathJax
Article Contents
Wei Gan, Zhenmin Jin, Ziqi Fang, Wenlong Liu. Deformation of the Subcontinental Lithospheric Mantle in NE China: Constraints from Rheological and Fabric Study of Mantle Peridotite Xenoliths from Jiaohe, Jilin Province. Journal of Earth Science, 2023, 34(3): 767-775. doi: 10.1007/s12583-020-1063-x
Citation: Wei Gan, Zhenmin Jin, Ziqi Fang, Wenlong Liu. Deformation of the Subcontinental Lithospheric Mantle in NE China: Constraints from Rheological and Fabric Study of Mantle Peridotite Xenoliths from Jiaohe, Jilin Province. Journal of Earth Science, 2023, 34(3): 767-775. doi: 10.1007/s12583-020-1063-x

Deformation of the Subcontinental Lithospheric Mantle in NE China: Constraints from Rheological and Fabric Study of Mantle Peridotite Xenoliths from Jiaohe, Jilin Province

doi: 10.1007/s12583-020-1063-x
More Information
  • Corresponding author: Wei Gan, ganwei@cugb.edu.cn
  • Received Date: 23 Jan 2020
  • Accepted Date: 16 Jul 2020
  • Available Online: 08 Jun 2023
  • Issue Publish Date: 30 Jun 2023
  • Mantle peridotite xenoliths in Jiaohe City, located near the northern part of the Tan-Lu fault, are key evidence for constraining the nature and evolution of the subcontinental lithospheric mantle (SCLM) of the NE China. Geochemical characteristics of Jiaohe peridotite xenoliths have been well studied, whereas the microstructures and associated fabrics remain poorly known. We report here major element composition of the constituent minerals, P-T conditions, microstructure, lattice preferred orientations (LPOs) of a set of xenoliths having coarse-grained and granuloblastic to porphyroclastic textures. These xenoliths are characterized by forsterite content of 89–91 in olivine. Dislocation microstructures, in olivine crystals revealed by oxidation decoration technique, are characterized by free dislocation, dislocation walls, dislocation loops and subgrains. Microstructures and deformation mechanism maps indicate that dislocation creep is the dominant deformation mechanism of almost anhydrous olivine in the SCLM. In most samples, the observed LPOs of olivine are typical A-type fabric. Stresses measured in the xenoliths using several olivine piezometers are ~2.7–8.5 MPa. The equilibration temperature conditions, calculated using several geo-thermometers, indicate the equilibrium temperature condition of peridotites in a range of 891 to 993 ℃. These results provide rheological constraint on the deformation of the SCLM in Jiaohe. Combined with the data for mantle xenoliths from adjacent regions, a heterogeneous evolution of the lithosphere deformation is inferred at the Jiaohe region. We propose that characteristics of the studied peridotite may be related to the Tan-Lu fault.

     

  • loading
  • Behr, W. M., Hirth, G., 2014. Rheological Properties of the Mantle Lid beneath the Mojave Region in Southern California. Earth and Planetary Science Letters, 393: 60–72. https://doi.org/10.1016/j.epsl.2014.02.039
    Bernard, R. E., Behr, W. M., 2017. Fabric Heterogeneity in the Mojave Lower Crust and Lithospheric Mantle in Southern California. Journal of Geophysical Research: Solid Earth, 122(7): 5000–5025. https://doi.org/10.1002/2017jb014280
    Bernard, R. E., Behr, W. M., Becker, T. W., et al., 2019. Relationships between Olivine CPO and Deformation Parameters in Naturally Deformed Rocks and Implications for Mantle Seismic Anisotropy. Geochemistry, Geophysics, Geosystems, 20(7): 3469–3494. https://doi.org/10.1029/2019gc008289
    Bertrand, P., Mercier, J. C. C., 1985. The Mutual Solubility of Coexisting Ortho- and Clinopyroxene: Toward an Absolute Geothermometer for the Natural System? Earth and Planetary Science Letters, 76(1/2): 109–122. https://doi.org/10.1016/0012-821x(85)90152-9
    Boneh, Y., Skemer, P., 2014. The Effect of Deformation History on the Evolution of Olivine CPO. Earth and Planetary Science Letters, 406: 213–222. https://doi.org/10.1016/j.epsl.2014.09.018
    Chatzaras, V., Tikoff, B., Newman, J., et al., 2015. Mantle Strength of the San Andreas Fault System and the Role of Mantle-Crust Feedbacks. Geology, 43(10): 891–894. https://doi.org/10.1130/g36752.1
    Durham, W. B., Goetze, C., Blake, B., 1977. Plastic Flow of Oriented Single Crystals of Olivine: 2. Observations and Interpretations of the Dislo-cation Structures. Journal of Geophysical Research, 82(36): 5755–5770. https://doi.org/10.1029/jb082i036p05755
    Gan, W., Jin, Z. M., Wang, G. H., et al., 2011. Rheological and Fabric Characteristics of Mantle Peridotite Xenoliths from Huinan, Jilin Province and Its Dynamic Implications. Acta Geologica Sinica, 85(4): 491–504 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201104006&dbcode=CJFD&year=2011&dflag=pdfdown
    Hao, Y. -T., Xia, Q. -K., Jia, Z. -B., et al., 2016. Regional Heterogeneity in the Water Content of the Cenozoic Lithospheric Mantle of Eastern China. Journal of Geophysical Research: Solid Earth, 121(2): 517–537. https://doi.org/10.1002/2015jb012105
    Hirth, G., Kohlstedt, D. L., 2003. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. In: Eiler, J., ed., Inside the Subduction Factory. American Geophysical Union, Washington, D. C. 83–105. https://doi.org/10.1029/138gm06
    Huang, X. L., Xu, Y. G., 2010. Thermal State and Structure of the Lithosphere beneath Eastern China: A Synthesis on Basalt-Borne Xenoliths. Journal of Earth Science, 21(5): 711–730. https://doi.org/10.1007/s12583-010-0111-3
    Ingrin, J., Skogby, H., 2000. Hydrogen in Nominally Anhydrous Upper-Mantle Minerals: Concentration Levels and Implications. European Journal of Mineralogy, 12(3): 543–570. https://doi.org/10.1127/ejm/12/3/0543
    Ismaïl, W. B., Mainprice, D., 1998. An Olivine Fabric Database: An Overview of Upper Mantle Fabrics and Seismic Anisotropy. Tectonophysics, 296(1/2): 145–157. https://doi.org/10.1016/s0040-1951(98)00141-3
    Jin, Z. M., Green, H. W. Ⅱ, Borch, R. S., 1989. Microstructures of Olivine and Stresses in the Upper Mantle beneath Eastern China. Tectonophysics, 169(1/2/3): 23–50. https://doi.org/10.1016/0040-1951(89)90181-9
    Jung, H., Karato, S. I., 2001. Water-Induced Fabric Transitions in Olivine. Science, 293(5534): 1460–1463. https://doi.org/10.1126/science.1062235
    Jung, H., Katayama, I., Jiang, Z., et al., 2006. Effect of Water and Stress on the Lattice-Preferred Orientation of Olivine. Tectonophysics, 421(1/2): 1–22. https://doi.org/10.1016/j.tecto.2006.02.011
    Karato, S. I., 2008. Lattice-Preferred Orientation. In: Karato, S. I., ed., Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge University Press, Cambridge. 255–270
    Karato, S. I., Jung, H., Katayama, I., et al., 2008. Geodynamic Significance of Seismic Anisotropy of the Upper Mantle: New Insights from Laboratory Studies. Annual Review of Earth and Planetary Sciences, 36(1): 59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120
    Karato, S. I., Toriumi, M., Fujii, T., 1980. Dynamic Recrystallization of Olivine Single Crystals during High-Temperature Creep. Geophysical Research Letters, 7(9): 649–652. https://doi.org/10.1029/gl007i009p00649
    Karato, S. I., 1987. Scanning Electron Microscope Observation of Dislocations in Olivine. Physics and Chemistry of Minerals, 14(3): 245–248. https://doi.org/10.1007/bf00307989
    Katayama, I., Jung, H., Karato, S. I., 2004. New Type of Olivine Fabric from Deformation Experiments at Modest Water Content and Low Stress. Geloogy, 32(12): 1045–1048. https://doi.org/10.1130/g20805.1
    Kil, Y., Wendlandt, R. F., 2004. Pressure and Temperature Evolution of Upper Mantle under the Rio Grande Rift. Contributions to Mineralogy and Petrology, 148(3): 265–280. https://doi.org/10.1007/s00410-004-0608-9
    Kohlstedt, D. L., Goetze, C., 1974. Low-Stress High-Temperature Creep in Olivine Single Crystals. Journal of Geophysical Research, 79(14): 2045–2051. https://doi.org/10.1029/jb079i014p02045
    Kohlstedt, D. L., Goetze, C., Durham, W. B., et al., 1976. New Technique for Decorating Dislocations in Olivine. Science, 191(4231): 1045–1046. https://doi.org/10.1126/science.191.4231.1045
    Kumamoto, K. M., Warren, J. M., Hansen, L. N., 2019. Evolution of the Josephine Peridotite Shear Zones: 2. Influences on Olivine CPO Evolution. Journal of Geophysical Research: Solid Earth, 124(12): 12763–12781. https://doi.org/10.1029/2019jb017968
    Lei, J. S., Zhao, D. P., Xu, X. W., et al., 2020. P-Wave Upper-Mantle Tomography of the Tanlu Fault Zone in Eastern China. Physics of the Earth and Planetary Interiors, 299: 106402. https://doi.org/10.1016/j.pepi.2019.106402
    Li, Y. H., Li, J. C., Song, H. B., et al., 2002. Helium Isotope Studies of the Mantle Xenoliths and Megacrysts from the Cenozoic Basalts in the Eastern China. Science in China Series D: Earth Sciences, 45(2): 174–183. https://doi.org/10.1007/bf02879794
    Li, Z. Y., Wen, D. P., Wang, Y. F., et al., 2020. An Investigation of Dislocation in Olivine Phenocrysts from the Hawaiian Basalts. Journal of Earth Science, 31(6): 1183–1189. https://doi.org/10.1007/s12583-020-1338-2
    Lin, C. Y., Shi, L. B., Ross, J. V., et al., 1992. Deformation Features of Mantle Xenoliths along TanLu Fault Zone and Their Geological Implications. Seismology and Geology, 14(4): 289–296 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ199204001.htm
    Lindsley, D. H., Dixon, S. A., 1976. Diopside-Enstatite Equilibria at 850 Degrees to 1 400 Degrees C, 5 to 35 kb. American Journal of Science, 276(10): 1285–1301. https://doi.org/10.2475/ajs.276.10.1285
    Ohuchi, T., Irifune, T., 2013. Development of A-Type Olivine Fabric in Water-Rich Deep Upper Mantle. Earth and Planetary Science Letters, 362: 20–30. https://doi.org/10.1016/j.epsl.2012.11.029
    Ohuchi, T., Kawazoe, T., Higo, Y., et al., 2015. Dislocation-Accommodated Grain Boundary Sliding as the Major Deformation Mechanism of Olivine in the Earth's Upper Mantle. Science Advances, 1(9): e1500360. https://doi.org/10.1126/sciadv.1500360
    Pan, S. K., Zheng, J. P., Griffin, W. L., et al., 2015. Nature and Evolution of the Lithospheric Mantle beneath the Eastern Central Asian Orogenic Belt: Constraints from Peridotite Xenoliths in the Central Part of the Great Xing'an Range, NE China. Lithos, 238: 52–63. https://doi.org/10.1016/j.lithos.2015.09.013
    Park, Y., Jung, H., 2015. Deformation Microstructures of Olivine and Pyroxene in Mantle Xenoliths in Shanwang, Eastern China, near the Convergent Plate Margin, and Implications for Seismic Anisotropy. International Geology Review, 57(5/6/7/8): 629–649. https://doi.org/10.1080/00206814.2014.928240
    Qi, C., Hansen, L. N., Wallis, D., et al., 2018. Crystallographic Preferred Orientation of Olivine in Sheared Partially Molten Rocks: The Source of the "a-c Switch". Geochemistry, Geophysics, Geosystems, 19(2): 316–336. https://doi.org/10.1002/2017gc007309
    Ross, J. V., Ave Lallemant, H. G., Carter, N. L., 1980. Stress Dependence of Recrystallized-Grain and Subgrain Size in Olivine. Tectonophysics, 70(1): 39–61. https://doi.org/10.1016/0040-1951(80)90020-7
    Soustelle, V., Tommasi, A., 2010. Seismic Properties of the Supra-Subduction Mantle: Constraints from Peridotite Xenoliths from the Avacha Volcano, Southern Kamchatka. Geophysical Research Letters, 37(13): L13307. https://doi.org/10.1029/2010gl043450
    Soustelle, V., Tommasi, A., Demouchy, S., et al., 2010. Deformation and Fluid-Rock Interaction in the Supra-Subduction Mantle: Microstructures and Water Contents in Peridotite Xenoliths from the Avacha Volcano, Kamchatka. Journal of Petrology, 51(1/2): 363–394. https://doi.org/10.1093/petrology/egp085
    Vauchez, A., Dineur, F., Rudnick, R., 2005. Microstructure, Texture and Seismic Anisotropy of the Lithospheric Mantle above a Mantle Plume: Insights from the Labait Volcano Xenoliths (Tanzania). Earth and Planetary Science Letters, 232(3/4): 295–314. https://doi.org/10.1016/j.epsl.2005.01.024
    Vauchez, A., Garrido, C. J., 2001. Seismic Properties of an Asthenospherized Lithospheric Mantle: Constraints from Lattice Preferred Orientations in Peridotite from the Ronda Massif. Earth and Planetary Science Letters, 192(2): 235–249. https://doi.org/10.1016/s0012-821x(01)00448-4
    Wang, L. C., 1996. The Occurrence of Dashihe Olivine Deposit in Jilin Province, China. Journal of Jilin University (Earth Science Edition), 26(1): 43–46 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ601.006.htm
    Wang, Q., 2010. A Review of Water Contents and Ductile Deformation Mechanisms of Olivine: Implications for the Lithosphere-Asthenosphere Boundary of Continents. Lithos, 120(1/2): 30–41. https://doi.org/10.1016/j.lithos.2010.05.010
    Wang, Y. F., Zhang, J. F., Shi, F., 2013. The Origin and Geophysical Implications of a Weak C-Type Olivine Fabric in the Xugou Ultrahigh Pressure Garnet Peridotite. Earth and Planetary Science Letters, 376: 63–73. https://doi.org/10.1016/j.epsl.2013.06.017
    Wang, Z. H., Shi, F., Zhang, J. F., 2020. Effects of Water on the Rheology of Dominant Minerals and Rocks in the Continental Lower Crust: A Review. Journal of Earth Science, 31(6): 1170–1182. https://doi.org/10.1007/s12583-020-1307-9
    Wells, P. R. A., 1977. Pyroxene Thermometry in Simple and Complex Systems. Contributions to Mineralogy and Petrology, 62(2): 129–139. https://doi.org/10.1007/bf00372872
    Wood, B. J., Banno, S., 1973. Garnet-Orthopyroxene and Orthopyroxene-Clinopyroxene Relationships in Simple and Complex Systems. Contributions to Mineralogy and Petrology, 42(2): 109–124. https://doi.org/10.1007/bf00371501
    Xiao, Y., Zhang, H. F., 2011. Effects of Melt Percolation on Platinum Group Elements and Re-Os Systematics of Peridotites from the Tan-Lu Fault Zone, Eastern North China Craton. Journal of the Geological Society, 168(5): 1201–1214. https://doi.org/10.1144/0016-76492010-113
    Xiao, Y., Zhang, H. F., Fan, W. M., et al., 2010. Evolution of Lithospheric Mantle beneath the Tan-Lu Fault Zone, Eastern North China Craton: Evidence from Petrology and Geochemistry of Peridotite Xenoliths. Lithos, 117(1/2/3/4): 229–246. https://doi.org/10.1016/j.lithos. 2010.02.017 doi: 10.1016/j.lithos.2010.02.017
    Xu, J. W., Zhu, G., 1994. Tectonic Models of the Tan-Lu Fault Zone, Eastern China. International Geology Review, 36(8): 771–784. https://doi.org/10.1080/00206819409465487
    Yamamoto, T., Ando, J. I., Tomioka, N., et al., 2017. Deformation History of Pinatubo Peridotite Xenoliths: Constraints from Microstructural Observation and Determination of Olivine Slip Systems. Physics and Chemistry of Minerals, 44(4): 247–262. https://doi.org/10.1007/s00269-016-0853-2
    Yang, Y., Abart, R., Yang, X. S., et al., 2019. Seismic Anisotropy in the Tibetan Lithosphere Inferred from Mantle Xenoliths. Earth and Planetary Science Letters, 515: 260–270. https://doi.org/10.1016/j.epsl.2019.03.027
    Yu, S. Y., Xu, Y. G., Huang, X. L., et al., 2009. Hf-Nd Isotopic Decoupling in Continental Mantle Lithosphere beneath Northeast China: Effects of Pervasive Mantle Metasomatism. Journal of Asian Earth Sciences, 35(6): 554–570. https://doi.org/10.1016/j.jseaes.2009.04.005
    Yu, S. Y., Xu, Y. G., Ma, J. L., et al., 2010. Remnants of Oceanic Lower Crust in the Subcontinental Lithospheric Mantle: Trace Element and Sr-Nd-O Isotope Evidence from Aluminous Garnet Pyroxenite Xenoliths from Jiaohe, Northeast China. Earth and Planetary Science Letters, 297(3/4): 413–422. https://doi.org/10.1016/j.epsl.2010.06.043
    Zaffarana, C., Tommasi, A., Vauchez, A., et al., 2014. Microstructures and Seismic Properties of South Patagonian Mantle Xenoliths (Gobernador Gregores and Pali Aike). Tectonophysics, 621: 175–197. https://doi.org/10.1016/j.tecto.2014.02.017
    Zhang, M. J., Hu, P. Q., Niu, Y. L., et al., 2007. Chemical and Stable Isotopic Constraints on the Nature and Origin of Volatiles in the Sub-Continental Lithospheric Mantle beneath Eastern China. Lithos, 96(1/2): 55–66. https://doi.org/10.1016/j.lithos.2006.10.006
    Zhang, M. J., Wang, X. B., Liu, G., et al., 2004. Compositions of Upper Mantle Fluids beneath Eastern China: Implications for Mantle Evolution. Acta Geologica Sinica—English Edition, 78(1): 125–130. https://doi.org/10.1111/j.1755-6724.2004.tb00683.x
    Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006. The Lithospheric Mantle beneath the Southwestern Tianshan Area, Northwest China. Contributions to Mineralogy and Petrology, 151(4): 457. https://doi.org/10.1007/s00410-006-0071-x
    Zhou, Q., Wu, F. Y., Chu, Z. Y., et al., 2007. Sr-Nd-Hf-Os Isotopic Characterizations of the Jiaohe Peridotite Xenoliths in Jilin Province and Constraints on the Lithospheric Mantle Age in Northeastern China. Acta Petrologica Sinica, 23(6): 1269–1280 (in Chinese with English Abstract) http://www.oalib.com/paper/1494067
    Zhu, G., Liu, C., Gu, C. C., et al., 2018. Oceanic Plate Subduction History in the Western Pacific Ocean: Constraint from Late Mesozoic Evolution of the Tan-Lu Fault Zone. Science China Earth Sciences, 61(4): 386–405. https://doi.org/10.1007/s11430-017-9136-4
    Zou, D. Y., Liu, Y. S., Hu, Z. C., et al., 2014. Pyroxenite and Peridotite Xenoliths from Hexigten, Inner Mongolia: Insights into the Paleo-Asian Ocean Subduction-Related Melt/Fluid-Peridotite Interaction. Geochimica et Cosmochimica Acta, 140: 435–454. https://doi.org/10.1016/j.gca.2014.05.046
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views(92) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return