Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 2
Apr 2023
Turn off MathJax
Article Contents
Chuanyang Lei, Liqiang Wang, Juxing Tang, Wei Li, Teng Gao, Huayun Yuan. Origin of Qushenla Formation Volcanic Rocks in the Nawucuo Area, Northern Tibet, and Constraints on the Subduction Polarity of the Bangong-Nujiang Tethys Ocean. Journal of Earth Science, 2023, 34(2): 467-486. doi: 10.1007/s12583-020-1076-5
Citation: Chuanyang Lei, Liqiang Wang, Juxing Tang, Wei Li, Teng Gao, Huayun Yuan. Origin of Qushenla Formation Volcanic Rocks in the Nawucuo Area, Northern Tibet, and Constraints on the Subduction Polarity of the Bangong-Nujiang Tethys Ocean. Journal of Earth Science, 2023, 34(2): 467-486. doi: 10.1007/s12583-020-1076-5

Origin of Qushenla Formation Volcanic Rocks in the Nawucuo Area, Northern Tibet, and Constraints on the Subduction Polarity of the Bangong-Nujiang Tethys Ocean

doi: 10.1007/s12583-020-1076-5
More Information
  • Corresponding author: Liqiang Wang, wlq060301@163.com; Juxing Tang, tangjuxing@126.com
  • Received Date: 18 Jun 2020
  • Accepted Date: 11 Aug 2020
  • Issue Publish Date: 30 Apr 2023
  • The Qushenla Formation volcanic rocks are widely exposed in the northern margin of the Bangong-Nujiang suture zone (BNSZ). Research on these rocks is of great significance for understanding the tectonic evolution of the Bangong-Nujiang Tethys Ocean (BNTO). In this study, a systematic geological survey was conducted on the Qushenla Formation volcanic rocks that are widely exposed in the Nawucuo area, in the northern margin of the western segment along the BNSZ. The whole-rock geochemistry, zircon U-Pb dating, and in situ zircon Lu-Hf isotopes were carried out in this study, aiming to constrain the formation age, rock genesis, magma source and tectonic setting of the volcanic rocks. The zircon U-Pb dating shows that the Qushenla Formation volcanic rocks in the western BNSZ erupted during the period of 120–108 Ma, i.e., Early Cretaceous. The Qushenla Formation volcanic rocks are a suite of intermediate-basic volcanic and pyroclastic rocks belonging to the medium-K calc-alkaline series. They are relatively enriched in light rare earth elements (LREEs) and incompatible elements such as Rb, K, La, Th, Sm, and Hf, whereas depleted in heavy REEs (HREEs) and high field strength elements (HFSEs) such as Nb, P, Zr, and Ti. The in situ zircon εHf(t) values of the volcanic rocks range from 8.95 to 12.57, with an average of 10.40. The Mg#, Th/La and Th/Ce values are between those of the mantle-derived magma and the continental crust. The formation of the Qushenla Formation volcanic rocks can be explained through the following process: (1) As the nospheric materials that upwelled during the rollback of the subducting Tethys Ocean slab induced the large-scale partial melting of the mantle wedge and the formation of the initial basaltic magma. (2) These mantle-derived magmas ascended and induced the partial melting of the lower crust to generate peraluminous melts. (3) The mixing of the peraluminous melts and mantle-derived melts generated the initial magma with homogeneous Sr-Nd isotope compositions. (4) Last, the eruption of the magma produced the widespread Qushenla Formation volcanic rocks at the surface. When combining this information with the regional geological background, it is believed that the Qushenla Formation volcanic rocks, the Meiriqicuo Formation volcanic rocks and the Late Jurassic–Early Cretaceous intrusive rocks together constitute the tectonic magmatic arc of the active continental margin on the southern margin of Qiangtang, which was formed in the tectonic setting of the northward subduction of the Bangong-Nujiang oceanic crust beneath the Qiangtang Block.

     

  • loading
  • Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144–146. https://doi.org/10.1038/362144a0
    Bolhar, R., Weaver, S. D., Whitehouse, M. J., et al., 2008. Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite (New Zealand). Earth and Planetary Science Letters, 268(3/4): 312–324. https://doi.org/10.1016/j.epsl.2008.01.022
    Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2): 48–57. https://doi.org/10.1016/j.epsl.2008.06.010
    Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam. 63–114
    Chang, Q. S., Zhu, D. C., Zhao, Z. D., 2011. Zircon U-Pb Geochonology and Hf Isotopes of the Early Cretaceous Rena-Co Rhyolites from Southern Margin of Qiangtang, Tibet, and Their Implications. Acta Petrologica Sinica, 27(7): 2034–2044 (in Chinese with English Abstract)
    Chen, H. A., Zhu, X. P., Ma, D. F., et al., 2013. Geochronology and Geochemistry of the Bolong Porphyry Cu-Au Deposit, Tibet and Its Mineralizing Significance. Acta Geologica Sinica, 87(10): 1593–1611 (in Chinese with English Abstract)
    Chen, Y. L., Jiang, Y. S., 2002. Age and Significance of Volcanic Rock of Early Cretaceous in the Bange—Qielicuo Area in Tibet. Journal of Geomechanics, 8(1): 43–49 (in Chinese with English Abstract)
    Deng, S. L., Lin, B., Zhang, H. C., et al., 2020. Geochronology and Ore Prospecting Potential of Qushenla Formation in Ban-Nu Suture Zone, Tibet. Earth Science, 45(3): 776–788 (in Chinese with English Abstract)
    Dilek, Y., Furnes, H., Shallo, M., 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ Evolution of a Marginal Basin Oceanic Crust. Lithos, 100(1/2/3/4): 174–209. https://doi.org/10.1016/j.lithos.2007.06.026
    Ding, S., Tang, J. X., Zheng, W. B., et al., 2017. Geochronology and Geochemistry of Naruo Porphyry Cu(Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance. Earth Science, 42(1): 1–23 (in Chinese with English Abstract)
    Du, D. D., Qu, X. M., Wang, G. H., et al., 2011. Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet: Evidence from Zircon U-Pb LAICPMS Dating and Petrogeochemistry of Arc Granites. Acta Petrologica Sinica, 27(7): 1993–2002 (in Chinese with English Abstract)
    Fu, J. J., Ding, L., Xu, Q., et al., 2015. Zircon U-Pb Geochronology and Hf Isotopic Composition of the Cretaceous Volcanic Rocks and Constraint of the Collision Age of Bangong-Nujiang Suture Zone in Dongco Area, Gaize, Tibet. Chinese Journal of Geology (Scientia Geologica Sinica), 50(1): 182–202 (in Chinese with English Abstract)
    Gao, J. F., Lu, J. J., Lai, M. Y., et al., 2003. Analysis of Trace Elements in Rock Samples Using HR-ICPMS. Journal of Nanjing University (Natural Sciences), 39(6): 844–850 (in Chinese with English Abstract)
    Geng, Q. R., Mao, X. C., Zhang, Z., et al., 2015. New Understanding in the Middle and West Part of Bangong Lake-Nujiang River Metallogenic Belt and Its lmplication for Prospecting. Geological Survey of China, 2(2): 1–11 (in Chinese with English Abstract)
    Griffin, W. L., Pearson, N. J., Belousova, E. A., et al., 2007. Reply to "Comment to Short-Communication Comment: Hf-Isotope Heterogeneity in Zircon 91500" by Griffin, W. L., Pearson, N. J., Belousova, E. A., et al. (Chemical Geology 233(2006) 358-363)" by F. Corfu. Chemical Geology, 244(1/2): 354–356. https://doi.org/10.1016/j.chemgeo.2007.06.023
    Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269. https://doi.org/10.1016/S0024-4937(02)00082-8
    Hastie, A. R., Kerr, A. C., Pearce, J. A., et al., 2007. Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 48(12): 2341–2357. https://doi.org/10.1093/petrology/egm062
    Hoskin, P. W. O., Black, L. P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 18(4): 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x
    Kang, Z. Q., Xu, J. F., Dong, Y. H., et al., 2008. Cretaceous Volcanic Rocks of Zenong Group in North-Middle Lhasa Block: Products of Southward Subducting of the Slainajap Ocean? Acta Petrologica Sinica, 24(2): 303–314 (in Chinese with English Abstract)
    Kang, Z. Q., Xu, J. F., Wang, B. D., et al., 2009. Geochemistry of Cretaceous Volcanic Rocks of Duoni Formation in Northern Lhasa Block: Discussion of Tectonic Setting. Earth Science, 34(1): 89–104 (in Chinese with English Abstract) doi: 10.3321/j.issn:1000-2383.2009.01.009
    Kang, Z. Q., Xu, J. F., Wang, B. D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block: Products of Bangong Co-Nujiang Tethy's Southward Subduction. Acta Petrologica Sinica, 26(10): 3106–3116 (in Chinese with English Abstract)
    Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980–983. https://doi.org/10.1 126/science.1136154 doi: 10.1126/science.1136154
    Kieffer, B., Arndt, N., Lapierre, H., et al., 2004. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell. Journal of Petrology, 45(4): 793–834. https://doi.org/10.1093/petrology/egg112
    Kinny, P. D., Mass, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327–341. https://doi.org/10.2113/0530327
    La Flèche, M. R., Camiré, G., Jenner, G. A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 148(3/4): 115–136. https://doi.org/10.1016/s0009-2541(98)00002-3
    Lei, C. Y., Li, W., Yin, X. K., et al., 2016. Geological Characteristics and Prospecting Potential of Jiangma-Saideng Copper Polymetalli Ore Spots. Metal Mine, (7): 144–150 (in Chinese with English Abstract) doi: 10.3969/j.issn.1001-1250.2016.07.027
    Lei, C. Y., Wu, J. L., Yin, X. K., et al., 2018. New Discovery of the Diorite Porphyry Dyke in the Shamuluo Formation in Western Segment of the Bangongco—Nujiang Suture Zone and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 37(2): 250–259 (in Chinese with English Abstract)
    Lei, C. Y., Wu, J. L., Yin, X. K., et al., 2019. Petrogenesis of Intermediate-Acid Intrusive Rocks in Awengcuo Area in the West Segment of the Bangongco-Nujiang Suture, Tibet, and Its Implications on the Regional Tectonic Evolution. Geotectonica et Metallogenia, 43(1): 168–185 (in Chinese with English Abstract)
    Lei, M., Chen, J. L., Xu, J. F., et al., 2015. Geochemistry of Early Late Cretaceous Gaerqiong High-Mg# Diorite Porphyry in Midnorthern Lhasa Terrane: Partial Melting of Delaminated Lower Continental Crust? Geological Bulletin of China, 34(2/3): 337–346 (in Chinese with English Abstract)
    Li, H. L., Gao, C., Li, Z. H., et al., 2016. Age and Tectonic Significance of Jingzhushan Formation in Bangong Lake Area, Tibet. Geotectonica et Metallogenia, 40(4): 663–673 (in Chinese with English Abstract)
    Li, K. X., Liang, H. Y., Bao, Z. W., et al., 2019. Petrogenesis of the Payangazu Complex in Southern Mandalay, Central Myanmar and Its Tectonic Implications. Journal of Earth Science, 30(1): 20–36. https://doi.org/10.1007/s12583-018-0862-9
    Li, S. M., Zhu, D. C., Wang, Q., et al., 2014. Northward Subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic Intrusive Rocks from Bangong Tso in Western Tibet. Lithos, 205: 284–297. https://doi.org/10.1016/j.lithos.2014.07.010
    Li, T., Yuan, H. Y., 2011. Element Abundance in the Oceanic and the Continental Lithospheres. Geochimica, 40(1): 1–5 (in Chinese with English Abstract)
    Li, Z. J., Li, C. W., Gao, Y. M., et al., 2019b. Geochronology and Geochemistry Characteristics of the Late Mid-Jurassic (ca. 163 Ma) OIB-Type Diabase and High-Mg Diorites in Shiquanhe Ophiolite: Products of Early Stage Oceanic Crust Subduction? Acta Petrologica Sinica, 35(3): 816–832 (in Chinese with English Abstract)
    Lin, B., Chen, Y. C., Tang, J. X., et al., 2017. Geochronology and Sr-Nd-Pb Isotopic Geochemistry of Ore-Bearing Porphyry, and Exploration Direction, Dongwodong Copper Polymetallic Deposit, North Tibet. Acta Geologica Sinica, 91(9): 1942–1958 (in Chinese with English Abstract) doi: 10.3969/j.issn.0001-5717.2017.09.003
    Liu, H., Zhang, H., Li, G. M., et al., 2016. Petrogenesis of the Early Cretaceous Qingcaoshan Strongly Peraluminous S-Type Granitic Pluton, Southern Qiangtang, Northern Tibet: Constraints from Whole-Rock Geochemistry and Zircon U-Pb Geochronology. Acta Scientiarum Naturalium Universitatis Pekinensis, 52(5): 848–860 (in Chinese with English Abstract)
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4
    Lu, D. Y., Ye, H. S., Cao, J., et al., 2017. LA-ICP-MS Zircon U-Pb Ages, Hf Isotopic Compositions, Geochemistry Characteristics and Its Geological Significance of Jiangligou Composite Granite, West Qingling Orogen. Acta Petrologica Sinica, 33(3): 942–962 (in Chinese with English Abstract)
    Ma, G. L., Yue, Y. H., 2010. Cretaceous Volcanic Rocks in Northern Lhasa Block: Constraints on the Tectonic Evolution of the Gangdese Arc. Acta Petrologica et Mineralogica, 29(5): 525–538 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-6524.2010.05.008
    Macdonald, R., Rogers, N. W., Fitton, J. G., et al., 2001. Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Africa. Journal of Petrology, 42(5): 877–900. https://doi.org/10.1093/petrology/42.5.877
    Mai, Y. J., Yang, W. G., Zhu, L. D., et al., 2018. Zircon U-Pb Age and Geochemistry of Volcanic Rocks from the Qushenla Formation in the Chagelong Area of Southern Margin of Qiangtang, Tibet-Restriction on the Evolution Time Limit of the Bangong Lake Nu River Ocean Basin. Mineralogy and Petrology, 38(2): 70–79 (in Chinese with English Abstract)
    Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411–429. https://doi.org/10.1016/s0024-4937(98)00076-0
    Maurice, A. F., Hasta, F. F., Khiamy, A. A., 2012. Neoproterozoic Nascent Island Arc Volcanism from the Nubian Shield of Egypt: Magma Genesis and Generation of Continental Crust in Intra-Oceanic Arcs. Lithos, 132/133: 1–20. https://doi.org/10.1016/j.lithos.2011.11.013
    Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. https://doi.org/10.1007/bf00375192
    Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Orogenic Andesites and Related Rocks, John Wiley and Sons, Chichester, 525–548
    Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46(5): 921–944. https://doi.org/10.1093/petrology/egi005
    Qiu, R. Z., Zhou, S., Deng, J. F., et al., 2004. Dating of Gabbro in the Shemalagou Ophiolite in the Westernsegment of the Bangong Co-Nujiang Ophiolite Belt, Tibet-with a Discussion of the Age of the Bangong Co-Nujiang Ophiolite Belt. Chinese Geology, 31(3): 262–268 (in Chinese with English Abstract)
    Qu, X. M., Wang, R. J., Xin, H. B., et al., 2009. Geochronology and Geochemistry of Igneous Rocks Related to the Subduction of the Tethys Oceanic Plate along the Bangong Lake Arc Zone, the Western Tibetan Plateau. Geochimica, 38(6): 523–535 (in Chinese with English Abstract) doi: 10.3321/j.issn:0379-1726.2009.06.002
    Ratajeski, K., Sisson, T. W., Glazner, A. F., 2005. Experimental and Geochemical Evidence for Derivation of the El Capitan Granite, California, by Partial Melting of Hydrous Gabbroic Lower Crust. Contributions to Mineralogy and Petrology, 149(6): 713–734. https://doi.org/10.1007/s00410-005-0677-4
    Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247–263. https://doi.org/10.1016/0024-4937(89)90028-5
    Saunders, A. D., Storey, M., Kent, R. W., et al., 1992. Consequences of Plume-Lithosphere Interactions. Geological Society, London, Special Publications, 68(1): 41–60. https://doi.org/10.1144/gsl.sp.1992.068.01.04
    Song, Y., Tang, J. X., Qu, X. M., et al., 2014. Progress in the Study of Mineralization in the Bangongco-Nujiang Metallogenic Belt and Some New Recognition. Advances in Earth Science, 29(7): 795–809(in Chinese with English Abstract)
    Sui, Q. L., Wang, Q., Zhu, D. C., et al., 2013. Compositional Diversity of ca. 110 Ma Magmatism in the Northern Lhasa Terrane, Tibet: Implications for the Magmatic Origin and Crustal Growth in a Continent-Continent Collision Zone. Lithos, 168/169: 144–159. https://doi.org/10.1016/j.lithos.2013.01.012
    Sun, G. M., Li, X. P., Duan, W. Y., et al., 2018. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 29(5): 1026–1039. https://doi.org/10.1007/s12583-018-0854-9
    Sun, J. F., Yang, J. H., 2009. A Review of in-situ U-Pb Dating Methods for the Accessory U-Bearing Minerals. Journal of Jilin University (Earth Science Edition), 39(4): 630–641 (in Chinese with English Abstract)
    Sun, S. Q., Zhang, C. J., Huang, R. Q., 2006. The Tectonic Settings Discrimination of the Basalts in the Convergent Margin of Plate by Th, Nb and Zr. Advances in Earth Science, 21(6): 593–598 (in Chinese with English Abstract) doi: 10.3321/j.issn:1001-8166.2006.06.005
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Tang, J. X., Song, Y., Wang, Q., et al., 2016. Geological Characteristics and Exploration Model of the Tiegelongnan Cu(Au-Ag) Deposit: The First Ten Million Tons Metal Resources of a Porphyry-Epithermal Deposit in Tibet. Acta Geoscientica Sinica, 37(6): 663–690 (in Chinese with English Abstract)
    Tang, J. X., Wang, Q., Yang, H. H., et al., 2017. Mineralization, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Tibet. Acta Geoscientica Sinica, 38(5): 571–613 (in Chinese with English Abstract)
    Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241–265. https://doi.org/10.1029/95rg00262
    Wang, L. J., Huang, J. P., Yu, J. H., et al., 2014. Zircon U-Pb Dating and Lu-Hf Isotope Study of Intermediate-Mafic Sub-Volcanic and Intrusive Rocks in the Lishui Basin in the Middle and Lower Reaches of Yangtze River. Chinese Science Bulletin, 59(14): 1305–1317 (in Chinese) doi: 10.1360/csb2014-59-14-1305
    Wei, S. G., Tang, J. X., Song, Y., et al., 2016. Magmatism and Mineralization of Epithermal-Porphyry Deposit from Bangonghu-Nujiang Metallogenic Belt: Taking Dongwodong Copper Deposit from Gerze County for Example. Geoscience, 30(6): 1179–1196 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-8527.2016.06.001
    Wei, S. G., Tang, J. X., Song, Y., et al., 2017a. Petrogenesis, Zircon U-Pb Geochronology and Sr-Nd-Hf Isotopes of the Intermediate-Felsic Volcanic Rocks from the Duolong Deposit in the Bangonghu-Nujiang Suture Zone, Tibet, and its tectonic significance. Acta Geologica Sinica, 91(1): 132–150 (in Chinese with English Abstract)
    Wei, S. G., Tang, J. X., Song, Y., et al., 2017b. Zircons LA-MC-ICP-MS U-Pb Ages, Petrochemical, Petrological and Its Significance of the Potassic Monzonitic Granite Porphyry from the Duolong Ore-Concentrated District, Gaize County, Xizang (Tibet). Geological Review, 63(1): 189–206 (in Chinese with English Abstract)
    Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325–343. https://doi.org/10.1016/0009-2541(77)90057-2
    Wu, F. Y., Wu, F. Y., Yang, Y. H., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1/2): 105–126. https://doi.org/10.1016/j.chemg eo.2006.05.003 doi: 10.1016/j.chemgeo.2006.05.003
    Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185–220 (in Chinese with English Abstract)
    Wu, H., Li, C., Hu, P. Y., et al., 2013. The Discovery of Qushenla Volcanic Rocks in Tasepule Area of Nyima County, Tibet, and Its Geological Significance. Geological Bulletin of China, 32(7): 1014–1026 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-2552.2013.07.007
    Wu, H., Li, C., Hu, P. Y., et al., 2014. The Discovery of Early Cretaceous Bimodal Volcanic Rocks in the Dachagou Area of Tibet and Its Significance. Geological Bulletin of China, 33(11): 1804–1814 (in Chinese with English Abstract)
    Wu, J. L., Yin, X. K., Liu, W., et al., 2019. The Discovery of Nb-Rich Volcanic Rock of the Qushenla Formation in Yema Area of the Western Segment of Bangong Co-Nujiang Suture in Tibet and Its Implications. Geological Bulletin of China, 38(4): 471–483 (in Chinese with English Abstract)
    Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554–1569. https://doi.org/10.1007/bf03184122
    Wu, Y. W., Li, C., Xu, M. J., et al., 2017. Zircon U-Pb Age, Geochemical Data: Constraints on the Origin and Tectonic Evolution of the Metamafic Rocks from Longmuco-Shuanghu-Lancang Suture Zone, Tibet. Journal of Earth Science, 28(3): 422–432. https://doi.org/10.10 07/s12583-017-0730-z doi: 10.1007/s12583-017-0730-z
    Xia, Z. D., Jiang, C. Y., Lu, R. H., 2012. Geochemical Characteristics and Geologic Implications of Halaqiaola Mafic Intrusion, Southeast Altai, Xinjiang. Earth Science, 37(5): 937–946 (in Chinese with English Abstract)
    Xie, G. G., Mo, X. X., Zhao, Z. D., et al., 2009. Jurassic–Cretaceous Sedimentation and Evolution of Ancient Oceanic Basin in Bangong Lake Area, Tibet. Earth Science Frontiers, 16(4): 31–39 (in Chinese with English Abstract)
    Xu, M. J., Li, C., Xu, W., et al., 2014a. Petrology, Geochemistry and Geochronology of Gabbros from the Zhongcang Ophiolitic Mélange, Central Tibet: Implications for an Intra-Oceanic Subduction Zone within the Neo-Tethys Ocean. Journal of Earth Science, 25(2): 224–240. https://doi.org/10.1007/s12583-014-0419-5
    Xu, M. J., Li, C., Zhang, X. Z., et al., 2014b. Nature and Evolution of the Neo-Tethys in Central Tibet: Synthesis of Ophiolitic Petrology, Geochemistry, and Geochronology. International Geology Review, 56(9): 1072–1096. https://doi.org/10.1080/00206814.2014.919616
    Xu, X. Y., Chen, J. L., Li, X. M., et al., 2010. Geochemistry and Petrogenesis of Volcanic Rocks from Sanlangpu Formation and Dashigou Formation. Acta Petrologica Sinica, 26(2): 617–632 (in Chinese with English Abstract)
    Yin, Q., Yi, H. S., Xia, G. Q., 2015. Characteristics of the Petrophysical Parameters of the Rocks in Shuanghu Region Qiangtang Basin. Progress in Geophysics, 30(1): 285–292 (in Chinese with English Abstract)
    Zeng, M., Chen, J. P., Wei, C. C., 2017. The Mugagangri Group is An Accretionary Complex Accreted onto the Southmargin of Qiangtang. Earth Science Frontiers, 24(5): 207–217 (in Chinese with English Abstract)
    Zhang, K. J., Xia, B. D., Wang, G. M., et al., 2004. Early Cretaceous Stratigraphy, Depositional Environments, Sandstone Provenance, and Tectonic Setting of Central Tibet, Western China. Geological Society of America Bulletin, 116(9): 1202–1222. https://doi.org/10.1130/b25388.1
    Zhang, Y. X., Zhang, K. J., Li, B., et al., 2007. Zircon SHRIMP U-Pb Geochronology and Petrogenesis of the Plagiogranites from the Lagkor Lake Ophiolite, Gerze, Tibet, China. Chinese Science Bulletin, 52(5): 651–659. https://doi.org/10.1007/s11434-007-0084-5
    Zhang, Z., Fang, X., Tang, J. X., et al., 2017. Chronology, Geochemical Characteristics of the Gaerqin Porphyry Copper Deposit in the Duolong Ore Concentration Area in Tibet and Discussion about the Identification of the Lithoscaps and the Possible Epithermal Deposit. Acta Petrologica Sinica, 33(2): 476–494 (in Chinese with English Abstract)
    Zhang, Z., Geng, Q. R., Peng, Z. M., et al., 2015. Petrogenesis of Fuye pluton in Rutog, Tibet: Zircon U-Pb Dating and Hf Isotopic Constraints. Geological Bulletin of China, 34(2/3): 262–273 (in Chinese with English Abstract)
    Zhao, X. Y., Yang, Z. S., Hou, Z. Z., et al., 2013. Petrogenesis of Diabase Porphyrite in Bangpu Deposit of Tibet and Its Instructions to the Regional Tectonic and Magmatic Evolution. Acta Petrologica Sinica, 29(11): 3767–3778 (in Chinese with English Abstract)
    Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1/2): 127–150. https://doi.org/10.1016/j.lithos.2006.10.003
    Zheng, Y. F., Zhao, Z. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chemical Geology, 231(1/2): 135–158. https://doi.org/10.1016/j.chemgeo.2006.01.005
    Zhou, J. S., Meng, X. J., Zang, W. S., et al., 2013. Zircon U-Pb Geochronology and Trace Element Geochemistry of the Ore-Bearing Porphyry in Qingcaoshan Porphyry Cu-Au Deposit, Tibet, and Its Geological Significance. Acta Petrologica Sinica, 29(11): 3755–3766 (in Chinese with English Abstract)
    Zhou, Z. H., Mao, J. W., Liu, J., et al., 2015. Early Cretaceous Magmatism and Ore Mineralization in Northeast China: Examples from Taolaituo Mo and Aobaotu Pb-Zn Deposits. International Geology Review, 57(2): 229–256. https://doi.org/10.1080/00206814.2014.1002117
    Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328: 290–308. https://doi.org/10.1016/j.chemgeo.2011.12.024
    Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429–1454. https://doi.org/10.1016/j.gr.2012.02.002
    Zhu, D. C., Mo, X. X., Wang, L. Q., et al., 2009. Petrogenesis of Highly Fractionated I-Type Granites in the Chayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf isotopes. Science in China (Series D), 52(9): 1223–1239 (in Chinese with English Abstract)
    Zhu, X. P., Chen, H. A., Ma, D. F., 2011. Re-Os Dating for the Molybdenite from Bolong Porphyry Copper-Gold Deposit in Tibet, China and Its Geological Significance. Acta Petrologica Sinica, 27(7): 2159–2164 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views(347) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return