Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 2
Apr 2023
Turn off MathJax
Article Contents
Jian Tian, Hou-Tian Xin, Xue-Jian Teng, Min Li, Qun-An Liao, Yong Zhang, Bang-Fang Ren. Petrogenesis and Tectonic Implications of the Late Silurian–Early Devonian Bimodal Intrusive Rocks in the Central Beishan Orogenic Belt, NW China: Constraints by Petrology, Geochemistry and Hf Isotope. Journal of Earth Science, 2023, 34(2): 431-443. doi: 10.1007/s12583-020-1078-3
Citation: Jian Tian, Hou-Tian Xin, Xue-Jian Teng, Min Li, Qun-An Liao, Yong Zhang, Bang-Fang Ren. Petrogenesis and Tectonic Implications of the Late Silurian–Early Devonian Bimodal Intrusive Rocks in the Central Beishan Orogenic Belt, NW China: Constraints by Petrology, Geochemistry and Hf Isotope. Journal of Earth Science, 2023, 34(2): 431-443. doi: 10.1007/s12583-020-1078-3

Petrogenesis and Tectonic Implications of the Late Silurian–Early Devonian Bimodal Intrusive Rocks in the Central Beishan Orogenic Belt, NW China: Constraints by Petrology, Geochemistry and Hf Isotope

doi: 10.1007/s12583-020-1078-3
More Information
  • Corresponding author: Jian Tian, jtian120925@163.com
  • Received Date: 08 Apr 2022
  • Accepted Date: 14 Aug 2022
  • Issue Publish Date: 30 Apr 2023
  • A large number of Late Silurian–Early Devonian intrusive rocks are distributed in the central Beishan orogenic belt (BOB). Tectonic setting of these intrusive rocks is of great significance to the study of the subduction and accretion of the Paleo-Asian Ocean. Previous studies show that most of the intrusive rocks in this region are S-type or A-type granitoids. In this study, we firstly reported the Late Silurian–Early Devoniandia bases, granodiorites on the southside of the Baiyunshan ophiolitic mélanges belt, as a part of Hongliuhe-Xichangjing ophiolitic mélanges belt (HXOMB). Zircon LA-ICP-MS U-Pb dating yields emplacement ages between 418 and 397 Ma, REE distribution patterns exhibit enriched LREE and flat HREE in the diabases, the discriminant diagrams show that the diabases have geochemical characteristics of intraplate basalt. The granodiorites in this paper present more like S- and A-type granitoids reported, showing the geochemical characteristics of syn/post-collision granites. Actually, the bimodal magmatic rocks are developed during Late Silurian–Early Devonian on both sides of the HXOMB, which are related to the tectonic background of the post orogeny extension. The diabases are tholeiitic with relative strong depleted εHf(t) (+8.1 to +13.0), which are mainly from relative depleted mantle. The granodiorites are calc-alkaline with relative slightly depleted εHf(t) (+0.7 to +5.6) and the lower Mg# and MgO contents (34.6–36.9, 0.50 wt.%–1.19 wt.% respectively), reflecting the source characteristics of meta-basalt. Therefore, the remelting of juvenile crust may be the main way of continental crust accretion during Late Silurian–Early Devonian in the central BOB.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1, S2, S3) are available in the online version of this article at https://doi.org/10.1007/s12583-020-1078-3.
  • loading
  • Allègre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1–25. https://doi.org/10.1016/0012-821x(78)90123-1
    Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. https://doi.org/10.1016/s0009-2541(02)00195-x
    Ao, S. J., Xiao, W. J., Han, C. M., et al., 2012. Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China: Implications for the Architecture of the Southern Altaids. Geological Magazine, 149(4): 606–625. https://doi.org/10.1017/s001 6756811000884 doi: 10.1017/s0016756811000884
    Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605–626. https://doi.org/10.1016/s0024-4937(98)00085-1
    Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1/2/3/4): 43–55. https://doi.org/10.1016/0009-2541(85)90034-8
    Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System". Earth and Planetary Science Letters, 154(1/2): 243–258. https://doi.org/10.1016/S0012-821x(97)00040-x
    Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1–29. https://doi.org/10.1016/j.lithos.2006.12.007
    Cheng, Y., Xiao, Q. H., Li, T. D., et al., 2021. An Intra-Oceanic Subduction System Influenced by Ridge Subduction in the Diyanmiao Subduction Accretionary Complex of the Xar Moron Area, Eastern Margin of the Central Asian Orogenic Belt. Journal of Earth Science, 32(1): 253–266. https://doi.org/10.1007/s12583-021-1404-4
    Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173–196. https://doi.org/10.1016/j.earscirev.2004.05.001
    Cleven, N. R., Lin, S. F., Xiao, W. J., 2015. The Hongliuhe Fold-and-Thrust Belt: Evidence of Terminal Collision and Suture-Reactivation after the Early Permian in the Beishan Orogenic Collage, Northwest China. Gondwana Research, 27(2): 796–810. https://doi.org/10.1016/j.gr.201 3.12.004 doi: 10.1016/j.gr.2013.12.004
    Coleman, R. G., 1989. Continental Growth of Northwest China. Tectonics, 8(3): 621–635. https://doi.org/10.1029/tc008i003p00621
    Collins, W. J., Richards, S. W., 2008. Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens. Geology, 36(7): 559–562. https://doi.org/10.1130/g24658a.1
    Condie, K. C., Kröner, A., 2013. The Building Blocks of Continental Crust: Evidence for a Major Change in the Tectonic Setting of Continental Growth at the End of the Archean. Gondwana Research, 23(2): 394–402. https://doi.org/10.1016/j.gr.2011.09.011
    Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet: 39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance. Earth and Planetary Science Letters, 79(3/4): 281–302. https://doi.org/10.1 016/0012-821x(86)90186-x doi: 10.1016/0012-821x(86)90186-x
    Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665. https://doi.org/10.1038/347662a0
    Ding, J. X., Han, C. M., Xiao, W. J., et al., 2015. Geochemistry and U-Pb Geochronology of Tungsten Deposit of Huanniushan Isaland Arc in the BOB, and Its Geodynamic Background. Acta Petrologica Sinica, 31(2): 594–616 (in Chinese with English Abstract)
    Draut, A. E., Clift, P. D., Amato, J. M., et al., 2009. Arc-Continent Collision and the Formation of Continental Crust: A New Geochemical and Isotopic Record from the Ordovician Tyrone Igneous Complex, Ireland. Journal of the Geological Society, 166(3): 485–500. https://doi.org/10.1144/0016-76492008-102
    Duan, X. L., Xin, H. T., Tian, J., et al., 2020. The Recognition of A-Type Granites South of Baiyunshan-Xichangjing Ophiolites and Its Tectonic Significance, Beishan Orogenic Belt. Geological Bulletin of China, in press (in Chinese with English Abstract)
    Duncan, A. R., Erlank, A. J., Marsh, J. S., 1984. Regional Geochemistry of the Karoo Igneous Province. Spec. Publ. Geol. Soc. Afr. , 13: 355–388
    Eby, G. N., 1990. The A-Type Granitoids: A Review of their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 26(1/2): 115–134. https://doi.org/10.1016/0024-4937(90)90043-z
    Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641–644. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
    Festa, A., Pini, G. A., Dilek, Y., et al., 2010. Mélanges and Mélange-Forming Processes: A Historical Overview and New Concepts. International Geology Review, 52(10/11/12): 1040–1105. https://doi.org/10.1080/00206810903557704
    Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033
    Gao, J. F., Lu, J. J., Lai, M. Y., et al., 2003. Analysis of Trace Elements in Rock Samples Using HR-ICPMS. J. Nanjing University (Nat. Sci. ), 39: 844–850 (in Chinese with English Abstract)
    Garland, F., Hawkesworth, C. J., Mantovani, M. S. M., 1995. Description and Petrogenesis of the Paran Rzhyolites, Southern Brazil. Journal of Petrology, 36(5): 1193–1227. https://doi.org/10.1093/petrology/36.5.1193
    Geng, J. Z., Li, H. K., Zhang, J., et al., 2011. Zircon Hf Isotopes Analysis by Means of LA-MC-ICP-MS. Geol. Bull. China, 30: 1508–1513 (in Chinese with English Abstract)
    Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133–147. https://doi.org/10.1016/s0016-7037(99)00343-9
    Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269. https://doi.org/10.1016/s0024-4937(02)00082-8
    Guo, Q. Q., Chung, S. L., Xiao, W. J., et al., 2017. Petrogenesis and Tectonic Implications of Late Devonian Arc Volcanic Rocks in Southern Beishan Orogen, NW China: Geochemical and Nd-Sr-Hf Isotopic Constraints. Lithos, 278–281: 84–96. https://doi.org/10.1016/j.lithos.2017.01.017
    Guo, Q. Q., Xiao, W. J., Hou, Q. L., et al., 2014. Construction of Late Devonian Dundunshan Arc in the Beishan Orogen and Its Implication for Tectonics of Southern Central Asian Orogenic Belt. Lithos, 184–187: 361–378. https://doi.org/10.1016/j.lithos.2013.11.007
    Han, B. F., 2007. Diverse Post-Collisional Granitoids and Their Tectonic Setting Discrimination. Frontiers of Geosciences, 14(3): 64–72 (in Chinese with English Abstract)
    Hou, Q. Y., Wang, Z., Liu, J. B., et al., 2012. Geochemistry Characteristics and SHRIMP Dating of Yueyashan Ophiolite in Beishan Orogen. Geoscience, 26(5): 1008–1018 (in Chinese with English Abstract) doi: 10.3969/j.issn.1000-8527.2012.05.022
    Hu, X. Z., Zhao, G. C., Hu, X. Y., et al., 2015. Geological Characteristics, Formation Epoch and Geotectonic Significance of the Yueyashan Ophiolitic Tectonic Mélange in Beishan Area, Inner Mongolia. Geological Bulletin of China, 34(2/3): 425–436 (in Chinese with English Abstract)
    Jahn, B. M., Wu, F. Y., Chen, B., 2000. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 23(2): 82–92. https://doi.org/10.18814/epiiugs/2000/v23i2/001
    Jia, X. H., Wang, Q., Tang, G. J., 2009. Research Progress and Significance of A-Type Granite. Geotectonica et Metallogenia, 33(3): 465–480 (in Chinese with English Abstract)
    Jian, P., Liu, D. Y., Kröner, A., et al., 2008. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 101(3/4): 233–259. https://doi.org/10.1016/j.lithos.2007.07.005
    Khain, E. V., Bibikova, E. V., Kröner, A., et al., 2002. The most Ancient Ophiolite of the Central Asian Fold Belt: U-Pb and Pb-Pb Zircon Ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and Geodynamic Implications. Earth and Planetary Science Letters, 199(3/4): 311–325. https://doi.org/10.1016/s0012-821x(02)00587-3
    Kuno, H., 1968. Differentiation of Basaltic Magmas. In: Hess, H. H., Poldervaart, A., eds., Basalts: The Poldervaart Treatise on Rocks of Basaltic Composition. Interscience Publishers, New York
    Kusky, T. M., Windley, B. F., Polat, A., 2018. Geological Evidence for the Operation of Plate Tectonics Throughout the Archean: Records from Archean Paleo-Plate Boundaries. Journal of Earth Science, 29(6): 1291–1303. https://doi.org/10.1007/s12583-018-0999-6
    Li, S., Wang, T., Tong, T., et al., 2011. Zircon U-Pb Age, Origin and Its Tectonic Significances of Huitongshan Devonian K-Feldspar Granites from Beishan Orogen, NW China. Acta Petrologica Sinica, 27: 3055–3070 (in Chinese with English Abstract)
    Li, S., Wang, T., Tong, Y., et al., 2009. Identification of the Early Devonian Shuangfengshan A-Type Granites in Liuyuan Area of Beishan and Its Implications to Tectonic Evolution. Acta Petrologica et Mineralogica, 28: 407–422 (in Chinese with English Abstract)
    Li, S., Wilde, S. A., Wang, T., 2013. Early Permian Post-Collisional High-K Granitoids from Liuyuan Area in Southern Beishan Orogen, NW China: Petrogenesis and Tectonic Implications. Lithos, 179: 99–119. https://doi.org/10.1016/j.lithos.2013.08.002
    Li, X. F., Zhang, C. L., Li, L., et al., 2015. Formation Age, Geochemical Characteristics of the Mingshujing Pluton in Beishan Area of Gansu Province and Its Geological Significance. Acta Petrologica Sinica, 31: 2521–2538 (in Chinese with English Abstract)
    Li, X. M., Yu, J. Y., Wang, G. Q., et al., 2011. LA-ICP-MS Zircon U-Pb Dating of Devonian Sangejing Formation and Dundunshan Group in Hongliuyuan, Beishan Area, Gansu Province. Geol. Bull. China, 30: 1501–1507 (in Chinese with English Abstract)
    Liu, X. C., Chen, B. L., Jahn, B. M., et al., 2011. Early Paleozoic (ca. 465 Ma) Eclogites from Beishan (NW China) and Their Bearing on the Tectonic Evolution of the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 42: 715–731. https://doi.org/10.1016/j.jseaes.2010.10.017
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1–2): 537–571. https://doi.org/10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In-situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257: 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Ludwig, K. R., 2003. ISOPLOT/EX 3.0: A Geochronological Toolkit for Microsoft Excel, 4. Berkeley Geochronology Centre Special Publication, Berkeley
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
    Mao, Q. G., Xiao, W. J., Fang, T. H., et al., 2012. Late Ordovician to Early Devonian Adakites and Nb-Enriched Basalts in the Liuyuan Area, Beishan, NW China: Implications for Early Paleozoic Slab-Melting and Crustal Growth in the Southern Altaids. Gondwana Research, 22(2): 534–553. https://doi.org/10.1016/j.gr.2011.06.006
    Meng, Y. K., Xiong, F. H., Yang, J. S., et al., 2019. Tectonic Implications and Petrogenesis of the Various Types of Magmatic Rocks from the Zedang Area in Southern Tibet. Journal of Earth Science, 30(6): 1125–1143. https://doi.org/10.1007/s12583-019-1248-3
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. https://doi.org/10.1 016/0012-8252(94)90029-9 doi: 10.1016/0012-8252(94)90029-9
    Nabelek, P. I., Liu, M., 2004. Petrologic and Thermal Constraints on the Origin of Leucogranites in Collisional Orogens. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1/2): 73–85. https://doi.org/10.1017/s0263593300000936
    Niu, Y. Z., Liu, C. Y., Shi, G. R., et al., 2018. Unconformity-Bounded Upper Paleozoic Megasequences in the Beishan Region (NW China) and Implications for the Timing of the Paleo-Asian Ocean Closure. Journal of Asian Earth Sciences, 167: 11–32. https://doi.org/10.1016/j.jseaes.2018.06.019
    Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
    Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290–300. https://doi.org/10.1016/0012-821x(73)90129-5
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
    Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33–47. https://doi.org/10.1007/bf00375192
    Pin, C., Marini, F., 1993. Early Ordovician Continental Break-Up in Variscan Europe: Nd-Sr Isotope and Trace Element Evidencefrom Bimodal Igneous Associations of the Southern Massif Central, France. Lithos, 29: 177–196. https://doi.org/10.1016/0024-4937(93)90016-6
    Qu, J. F., Xiao, W. J., Windley, B. F., et al., 2011. Ordovician Eclogites from the Chinese Beishan: Implications for the Tectonic Evolution of the Southern Altaids. Journal of Metamorphic Geology, 29(8): 803–820. https://doi.org/10.1111/j.1525-1314.2011.00942.x
    Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335–356. https://doi.org/10.1016/s0009-2541(99)00106-0
    Saunders, A. D., Rogers, G., Marriner, G. F., et al., 1987. Geochemistry of Cenezoic Volcanic Rocks, Baja California, Mexico: Implications for the Petrogenesis of Post-Subduction Magmas. Journal of Volcanology and Geothermal Research, 32(1/2/3): 223–245. https://doi.org/10.1016/0377-0273(87)90046-1
    Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299–307. https://doi.org/10.1038/364299a0
    Song, D. F., Xiao, W. J., Han, C. M., et al., 2013. Progressive Accretionary Tectonics of the Beishan Orogenic Collage, Southern Altaids: Insights from Zircon U-Pb and Hf Isotopic Data of High-Grade Complexes. Precambrian Research, 227: 368–388. https://doi.org/10.1016/j.preca mres.2012.06.011 doi: 10.1016/j.precamres.2012.06.011
    Song, D. F., Xiao, W. J., Windley, B. F., et al., 2015. A Paleozoic Japan-Type Subduction-Accretion System in the Beishan Orogenic Collage, Southern Central Asian Orogenic Belt. Lithos, 224/225: 195–213. https://doi.org/10.1016/j.lithos.2015.03.005
    Stern, C. R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contrib. Miner. Petrol., 123: 263–281. https://doi.org/10.1007/s004100050155
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1/2/3/4): 29–44. https://doi.org/10.1016/s0024-4937(98)00024-3
    Tang, G. J., Wang, Q., Wyman, D. A., et al., 2010. Geochronology and Geochemistry of Late Paleozoic Magmatic Rocks in the Lamasu-Dabate Area, Northwestern Tianshan (West China): Evidence for a Tectonic Transition from Arc to Post-Collisional Setting. Lithos, 119(3/4): 393–411. https://doi.org/10.1016/j.lithos.2010.07.010
    Tian, J., Xin, H. T., Teng, X. J., et al., 2020. The Determination of Volcanic Rocks in Upper Devonian Dundunshan Formation in the Baiyunshan Area of Beishan Orogenic Belt, Inner Mongolia. Acta Petrologica Sinica, 36(2): 509–525. https://doi.org/10.18654/1000-0569/2020.02.11
    Tian, Z. H., Xiao, W. J., Shan, Y. H., et al., 2013. Mega-Fold Interference Patterns in the Beishan Orogen (NW China) Created by Change in Plate Configuration during Permo-Triassic Termination of the Altaids. Journal of Structural Geology, 52: 119–135. https://doi.org/10.1016/j.jsg.2013.03.016
    Wakabayashi, J., Dilek, Y., 2011. Introduction: Characteristics and Tectonic Settings of Mélanges, and Their Significance for Societal and Engineering Problems, In: Wakabayashi, J., Dilek, Y., eds., Mélanges: Processes of Formation and Societal Significance: Geological Society of America Special Paper 480, https://doi.org/10.1130/2011.2480(00)
    Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin, 131(11/12): 1943–1964. https://doi.org/10.1130/b35138.1
    Wang, S. Q., Hu, X. J., Zhao, H. L. 2019. New Discovery of Late Carboniferous Alkaline Granite in the Honggeer Area, Sonid Zuoqi, Inner Mongolia. Geological Survey and Research, 42(2): 81–85 (in Chinese with English Abstract)
    Wang, X. Y., Yuan, C., Zhang, Y. Y., et al., 2018. S-Type Granite from the Gongpoquan Arc in the Beishan Orogenic Collage, Southern Altaids: Implications for the Tectonic Transition. Journal of Asian Earth Sciences, 153: 206–222 (in Chinese with English Abstract)
    Wang, E. T., Wu, L., Zhai, X. W., et al., 2022. Geochronology, Petrogenesis and Tectonic Implications of Huaniushan Diorite Porphyrite from the Gansu Beishan Area in the Southern Central Asian Orogenic Belt. Earth Science, 47(9): 3285–3300 (in Chinese with English Abstract)
    Wang, X. -S., Yang, F., Klemd, R., et al., 2022. Zircon Ages of Metasedimentary Rocks in the Wuwamen Ophiolitic Mélange, Chinese South Tianshan: Implications for the Paleozoic Subduction-Accretion in the Southern Central Asian Orogenic Belt. Journal of Earth Science, 33(5): 1059–1071. https://doi.org/10.1007/s12583-022-1695-0
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202
    Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-7649 2006-022 doi: 10.1144/0016-76492006-022
    Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10): 1553–1594. https://doi.org/10.2475/10.2010.12
    Xiao, W. J., Santosh, M., 2014. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth. Gondwana Research, 25(4): 1429–1444. https://doi.org/10.1016/j.gr.20 14.01.008 doi: 10.1016/j.gr.2014.01.008
    Xiao, W. J., Windley, B. F., Badarch, G., et al., 2004. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161(3): 339–342. https://doi.org/10.1144/0016-764903-165
    Yang, F. L., Zhao, Z. X., Jia, W. Y., et al., 2016. Discussion on the Forming Age of the Beishan Group in the Beishan. Area, Inner Mongolia. Geological Survey and Research, 39(2): 90–93 (in Chinese with English Abstract)
    Yang, J. G., Wang, L., Wang, X. H., et al., 2015. SHRIMP Zircon U-Pb Dating of the Xiaohongshan Vanadium-Titanium Magnetite Deposit, Ejin Banner, Beishan, Inner Mongolia, and Its Geological Implications. Geol. Bull. China, 34: 1699–1705 (in Chinese with English Abstract)
    Yang, Y. Q., Lu, B., Meng, G. X., et al., 2013. Geochemistry, SHRIMP Zircon U-Pb Dating and Formation Environment of Dongqiyishan Granite, Inner Mongolia. Acta Geosci. Sin., 34: 163–175 (in Chinese with English Abstract)
    Yu, J. Y., Guo, L., Li, J. X., et al., 2016. The Petrogenesis of Sodic Granites in the Niujuanzi Area and Constraints on the Paleozoic Tectonic Evolution of the Beishan Region, NW China. Lithos, 256–257: 250–268. https://doi.org/10.1016/j.lithos.2016.04.003
    Yu, J. Y., Li, X. G., Wang, G. Q., et al., 2012. Zircon U-Pb Ages of Huitongshan and Zhangfangshan Ophiolite in Beishan of Gansu-Inner Mongolia Border Area and Their Significance. Geological Bulletin of China, 31: 2038–2045 (in Chinese with English Abstract)
    Yu, Y. Y., Zong, K. Q., Yuan, Y., et al., 2022. Crustal Contamination of the Mantle-Derived Liuyuan Basalts: Implications for the Permian Evolution of the Southern Central Asian Orogenic Belt. Journal of Earth Science, 33(5): 1081–1094. https://doi.org/10.1007/s12583-022-1706-1
    Yuan, Y., Zong, K. Q., He, Z. Y., et al., 2018. Geochemical Evidence for Paleozoic Crustal Growth and Tectonic Conversion in the Northern Beishan Orogenic Belt, Southern Central Asian Orogenic Belt. Lithos, 302/303: 189–202. https://doi.org/10.1016/j.lithos.2017.12.026
    Zhang, W., Feng, J., Zheng, R., et al., 2011. LA-ICP MS Zircon U-Pb Ages of the Granites from the South of Yin'aoxia and Their Tectonic Significances. Acta Petrologica Sinica, 27: 1649–1661 (in Chinese with English Abstract)
    Zhang, W., Pease, V., Wu, T. R., et al., 2012a. Discovery of an Adakite-Like Pluton near Dongqiyishan (Beishan, NW China)—Its Age and Tectonic Significance. Lithos, 142/143: 148–160. https://doi.org/10.10 16/j.lithos.2012.02.021 doi: 10.1016/j.lithos.2012.02.021
    Zhang, W., Wu, T. R., Zheng, R. G., et al., 2012b. Post-Collisional Southeastern Beishan Granites: Geochemistry, Geochronology, Sr-Nd-Hf Isotopes and their Implications for Tectonic Evolution. Journal of Asian Earth Sciences, 58: 51–63. https://doi.org/10.1016/j.jseaes. 201 2.07.004 doi: 10.1016/j.jseaes.2012.07.004
    Zhang, Y. Y., Guo, Z. J., 2008. Accurate Constraint on Formation and Emplacement Age of Hongliuhe Ophiolite, Boundary Region between Xinjiang and Gansu Provinces and Its Tectonic Implications. Acta Petrologica Sinica, 24: 803–809 (in Chinese with English Abstract)
    Zhang, G. Z., Xin, H. T., Duan, L. F., et al., 2022. Geochemical Characteristics and Tectonic Implications of the End Early Permian High Magnesium Gabbro from Northern Beishan Orogenic Belt, Inner Mongolia. Earth Science, 47(9): 3258–3269 (in Chinese with English Abstract)
    Zhao, Z. H., Guo, Z. J., Wang, Y., 2007. Geochronology, Geochemical Characteristics and Tectonic Implications of the Granitoids from Liuyuan Area, Beishan, Gansu Province, Northwest China. Acta Petrologica Sinica, 23: 1847–1860 (in Chinese with English Abstract)
    Zhao, Z. X., Hai, X. U., Jia, Y. Q., et al., 2016. Geochemistry and LA-ICP-MS Zircon U-Pb Age of Porphyritic Granodiorite in the Beishan Orogenic Belt in Inner Mongolia and Their Geological Significance. East China Geology, 37: 252–258 (in Chinese with English Abstract)
    Zhao, Z. X., Jia, Y. Q., Xu, H., et al., 2015. LA-ICP-MS- Zircon U-Pb Age of Quartz Diorite in Beishan Orogenic Belt, Inner Mongolia, and from the Jiaochagou Area Its Tectonic Significance. Acta Geologica Sinica, 89: 1210–1218 (in Chinese with English Abstract)
    Zheng, R. G., Wu, T. R., Zhang, W., et al., 2013. Late Paleozoic Subduction System in the Southern Central Asian Orogenic Belt: Evidences from Geochronology and Geochemistry of the Xiaohuangshan Ophiolite in the Beishan Orogenic Belt. Journal of Asian Earth Sciences, 62: 463–475. https://doi.org/10.1016/j.jseaes.2012.10.033
    Zheng, R. G., Xiao, W. J., Li, J. Y., et al., 2018. A Silurian–Early Devonian Slab Window in the Southern Central Asian Orogenic Belt: Evidence from High-Mg Diorites, Adakites and Granitoids in the Western Central Beishan Region, NW China. Journal of Asian Earth Sciences, 153: 75–99. https://doi.org/10.1016/j.jseaes.2016.12.008
    Zhong, Y. T., He, C., Chen, N. S., et al., 2018. Tectonothermal Records in Migmatite-Like Rocks of the Guandi Complex in Zhoukoudian, Beijing: Implications for Late Neoarchean to Proterozoic Tectonics of the North China Craton. Journal of Earth Science, 29(5): 1254–1275. https://doi.org/10.1007/s12583-018-0856-7
    Zhu, J., Lü, X. B., Peng, S. G., 2016. U-Pb Zircon Geochronology, Geochemistry and Tectonic Implications of the Early Devonian Granitoids in the Liuyuan Area, Beishan, NW China. Geosciences Journal, 20(5): 609–625. https://doi.org/10.1007/s12303-016-0004-2
    Zuo, G. C., Zhang, S. L., He, G. Q., et al., 1991. Plate Tectonic Characteristics during the Early Paleozoic in Beishan near the Sino-Mongolian Border Region, China. Tectonophysics, 188(3/4): 385–392. https://doi.org/10.1016/0040-1951(91)90466-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(233) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return