Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 2
Apr 2021
Turn off MathJax
Article Contents
Renguang Zuo. Mineral Exploration Using Subtle or Negative Geochemical Anomalies. Journal of Earth Science, 2021, 32(2): 439-454. doi: 10.1007/s12583-020-1079-2
Citation: Renguang Zuo. Mineral Exploration Using Subtle or Negative Geochemical Anomalies. Journal of Earth Science, 2021, 32(2): 439-454. doi: 10.1007/s12583-020-1079-2

Mineral Exploration Using Subtle or Negative Geochemical Anomalies

doi: 10.1007/s12583-020-1079-2
More Information
  • Corresponding author: Zuo Renguang, zrguang@cug.edu.cn
  • Received Date: 21 Jul 2020
  • Accepted Date: 26 Sep 2020
  • Publish Date: 01 Apr 2021
  • Mineral resources prediction and assessment is one of the most important tasks in geosciences. Geochemical anomalies, as direct indicators of the presence of mineralization, have played a significant role in the search of mineral deposits in the past several decades. In the near future, it may be possible to recognize subtle geochemical anomalies through the use of processing of geochemical exploration data using advanced approaches such as the spectrum-area multifractal model. In addition, negative geochemical anomalies can be used to locate mineralization. However, compared to positive geochemical anomalies, there has been limited research on negative geochemical anomalies in geochemical prospecting. In this study, two case studies are presented to demonstrate the identification of subtle geochemical anomalies and the significance of negative geochemical anomalies. Meanwhile, the opportunities and challenges in evaluating subtle geochemical anomalies associated with mineralization, and benefits of mapping of negative anomalies are discussed.

     

  • loading
  • Barsukov, V. L., Grigorian, S. V., Ovchinnikov, L. N., 1981. Geochemical Methods of Ore Deposit Prospecting. Science Publishing House, Moscow. 317 (in Russian)
    Chen, Y. L., Lu, L. J., Li, X. B., 2014. Application of Continuous Restricted Boltzmann Machine to Identify Multivariate Geochemical Anomaly. Journal of Geochemical Exploration, 140: 56-63. https://doi.org/10.1016/j.gexplo.2014.02.013
    Chen, Y., 1987. Geochemical Characteristics and Geochemical Prospecting of Gold in the Western Junggar Au Metallogenic Belt: [Dissertation]. Changchun College of Geology, Changchun (in Chinese with English Abstract)
    Cheng, Q. M., 2007. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1/2): 314-324. https://doi.org/10.1016/j.oregeorev.2006.10.002
    Cheng, Q. M., 2012. Singularity Theory and Methods for Mapping Geochemical Anomalies Caused by Buried Sources and for Predicting Undiscovered Mineral Deposits in Covered Areas. Journal of Geochemical Exploration, 122: 55-70. https://doi.org/10.1016/j.gexplo.2012.07.007
    Cheng, Q. M., 2014. Vertical Distribution of Elements in Regolith over Mineral Deposits and Implications for Mapping Geochemical Weak Anomalies in Covered Areas. Geochemistry: Exploration, Environment, Analysis, 14(3): 277-289. https://doi.org/10.1144/geochem2012-174
    Cheng, Q. M., Agterberg, F. P., Ballantyne, S. B., 1994. The Separation of Geochemical Anomalies from Background by Fractal Methods. Journal of Geochemical Exploration, 51(2): 109-130. https://doi.org/10.1016/0375-6742(94)90013-2
    Cheng, Q. M., Xu, Y. G., Grunsky, E., 1999. Integrated Spatial and Spectral Analysis for Geochemical Anomaly Separation. In: Lippard S. J., Naess, A., Sinding-Larsen, R., eds., Proceedings of the Fifth Annual Conference of the International Association for Mathematical Geology. August 6-11, Trondheim. 87-92
    Cheng, Q. M., Xu, Y. G., Grunsky, E., 2000. Integrated Spatial and Spectrum Method for Geochemical Anomaly Separation. Natural Resources Research, 9: 43-52. https://doi.org/10.1023/a:1010109829861
    Cheng, Y. B., Mao, J. W., 2010. Age and Geochemistry of Granites in Gejiu Area, Yunnan Province, SW China: Constraints on Their Petrogenesis and Tectonic Setting. Lithos, 120(3/4): 258-276. https://doi.org/10.1016/j.lithos.2010.08.013
    Cheng, Y. B., Mao, J. W., Chang, Z. S., et al., 2013. The Origin of the World Class Tin-Polymetallic Deposits in the Gejiu District, SW China: Constraints from Metal Zoning Characteristics and 40Ar-39Ar Geochronology. Ore Geology Reviews, 53: 50-62. https://doi.org/10.1016/j.oregeorev.2012.12.008
    China Geological Survey, 2016. China Geochemical Survey Report 2016. China Geological Survey, Beijing (in Chinese)
    de Caritat, P., Reimann, C., 2012. Comparing Results from Two Continental Geochemical Surveys to World Soil Composition and Deriving Predicted Empirical Global Soil (PEGS2) Reference Values. Earth and Planetary Science Letters, 319/320: 269-276. https://doi.org/10.1016/j.epsl.2011.12.033
    de Mulder, E. F. J., Cheng, Q. M., Agterberg, F., et al., 2016. New and Game-Changing Developments in Geochemical Exploration. Episodes, 39(1): 70-71. https://doi.org/10.18814/epiiugs/2016/v39i1/010
    De Vos, W., Tarvainen, T., Salminen, R., et al., 2006. Geochemical Atlas of Europe. Part 2-Interpretation of Geochemical Maps, Additional Tables, Figures, Maps, and Related Publications. Geological Survey of Finland, Espoo. 692
    Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., et al., 2003. Isometric Logratio Transformations for Compositional Data Analysis. Mathematical Geology, 35: 279-300. https://doi.org/10.1023/a:1023818214614
    Fawcett, T., 2006. An Introduction to ROC Analysis. Pattern Recognition Letters, 27(8): 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
    Ge, C. H., Han, F., Zou, T. R., et al., 1981. Geological Characteristics of the Makeng Iron Deposit of Marine Volcano-Sedimentary Origin. Acta Geosicientia Sinica, 3: 47-69 (in Chinese with English Abstract) http://www.researchgate.net/publication/283995417_Geological_characteristics_of_the_Makeng_iron_deposit_of_marine_volcano-sedimentary_origin
    Gonçalves, M. A., Mateus, A., 2019. Delimiting Geochemical Anomalies in the Exploration of Covered Deposits with Multifractal Methods and Using Stream Sediment Data from the Iberian Pyrite Belt, Southwest Iberia. Ore Geology Reviews, 112: 103018. https://doi.org/10.1016/j.oregeorev.2019.103018
    Gong, Q. J., Yan, T. T., Li, J. Z., et al., 2016. Experimental Simulation of Element Mass Transfer and Primary Halo Zone on Water-Rock Interaction. Applied Geochemistry, 69: 1-11. https://doi.org/10.1016/j.apgeochem.2016.04.001
    Govett, G. J. S., 1983. Handbook of Exploration Geochemistry. Vol. 3. Rock Geochemistry in Mineral Exploration. Elsevier, Amsterdam. 461
    Grunsky, E. C., 2010. The Interpretation of Geochemical Survey Data. Geochemistry: Exploration, Environment, Analysis, 10(1): 27-74. https://doi.org/10.1144/1467-7873/09-210
    Han, F., Ge, C. H., 1983. Geological and Geochemical Features of Submarine Volcanic Hydrothermal-Sedimentary Mineralization of Makeng Iron Deposit, Fujian Province. Bulletin of the Institute of Mineral Deposits Chinese Academy of Geological Sciences, 7: 1-118 (in Chinese with English Abstract) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198300008010.htm
    Hawkes, H. E., 1957. Principles of Geochemical Prospecting. U.S. Geological Survey, Washington D. C. 225-355
    Hawkes, H. E., Webb, J. S., 1962. Geochemistry in Mineral Exploration. Harper and Row, New York
    Lecumberri-Sanchez, P., Vieira, R., Heinrich, C. A., et al., 2017. Fluid-Rock Interaction is Decisive for the Formation of Tungsten Deposits. Geology, 45(7): 579-582. https://doi.org/10.1130/g38974.1
    Li, F., 1993. Geochemical Characteristics and Indicative Significance of Barium in Two Types of Deposits. Geological Science and Technology Information, 12: 68-72 (in Chinese with English Abstract) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ199303012.htm
    Liu, Y. P., Ma, S. M., Zhu, L. X., et al., 2016. The Multi-Attribute Anomaly Structure Model: An Exploration Tool for the Zhaojikou Epithermal Pb-Zn Deposit, China. Journal of Geochemical Exploration, 169: 50-59. https://doi.org/10.1016/j.gexplo.2016.07.006
    Ma, S. M., Zhu, L. X., Liu, C. M., et al., 2013. Anomaly Models of Spatial Structures for Copper-Molybdenum Ore Deposits and Their Application. Acta Geologica Sinica-English Edition, 87(3): 843-857. https://doi.org/10.1111/1755-6724.12093
    Mao, J. W., Cheng, Y. B., Guo, C. L., et al., 2008. Gejiu Tin Polymetallic Ore-Field: Deposit Model and Discussion. Acta Geologica Sinica, 81: 1456-1468 (in Chinese with English Abstract) http://www.researchgate.net/publication/285875153_Gejiu_tin_polymetallic_Ore-Field_Deposit_model_and_discussion_for_several_points_concerned?ev=auth_pub
    Matheron, G., 1962. Traité de Géostatistique Appliquée. Editions Technip, Paris
    Reimann, C., de Caritat, P., GEMAS Project Team, et al., 2012. New Soil Composition Data for Europe and Australia: Demonstrating Comparability, Identifying Continental-Scale Processes and Learning Lessons for Global Geochemical Mapping. Science of the Total Environment, 416: 239-252. https://doi.org/10.1016/j.scitotenv.2011.11.019
    Rose, A. W., Hawkes, H. E., Webb, J. S., 1979. Geochemistry in Mineral Exploration. Academic Press, New York. 657
    Shi, C. Y., Wang, C. F., 1995. Regional Geochemical Secondary Negative Anomalies and Their Significance. Journal of Geochemical Exploration, 55(1/2/3): 11-23. https://doi.org/10.1016/0375-6742(95)00033-x
    Smith, D. B., Cannon, W. F., Woodruff, L. G., et al., 2012. History and Progress of the North American Soil Geochemical Landscapes Project, 2001-2010. Earth Science Frontiers, 19(3): 19-32 http://d.wanfangdata.com.cn/periodical/dxqy201203004
    Tukey, J. W., 1977. Exploratory Data Analysis. Addison-Wesley, Reading
    Wang, H. C., Cheng, Q. M., Zuo, R. G., 2015a. Quantifying the Spatial Characteristics of Geochemical Patterns via GIS-Based Geographically Weighted Statistics. Journal of Geochemical Exploration, 157: 110-119. https://doi.org/10.1016/j.gexplo.2015.06.004
    Wang, H. C., Cheng, Q. M., Zuo, R. G., 2015b. Spatial Characteristics of Geochemical Patterns Related to Fe Mineralization in the Southwestern Fujian Province (China). Journal of Geochemical Exploration, 148: 259-269. https://doi.org/10.1016/j.gexplo.2014.10.010
    Wang, H. C., Zuo, R. G., 2015. A Comparative Study of Trend Surface Analysis and Spectrum-Area Multifractal Model to Identify Geochemical Anomalies. Journal of Geochemical Exploration, 155: 84-90. https://doi.org/10.1016/j.gexplo.2015.04.013
    Wang, J., Zuo, R. G., 2020. Quantifying the Distribution Characteristics of Geochemical Elements and Identifying Their Associations in Southwestern Fujian Province, China. Minerals, 10(2): 183. https://doi.org/10.3390/min10020183
    Xi, X. H., 2007. Geological Survey Strategic Choice of 21st Century Exploration Geochemistry. Geophysical & Geochemical Exploration, 31(4): 283-288 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-WTYH200704002.htm
    Xie, X., 1981. Geological Dictionary. Book 5. Geological Publishing House, Beijing. 188-189 (in Chinese)
    Xie, X. J., 1999. Empirical Prospecting, Scientific Exploration and Information Exploration. Journal of Geochemical Exploration, 67(1/2/3): 97-108. https://doi.org/10.1016/s0375-6742(99)00073-4
    Xie, X. J., Mu, X. Z., Ren, T. X., 1997. Geochemical Mapping in China. Journal of Geochemical Exploration, 60(1): 99-113. https://doi.org/10.1016/s0375-6742(97)00029-0
    Xie, X., Wang, J., Yang, Z., et al., 1990. A Computer System for the Rapid Evaluation and Sorting of Multi-Element Geochemical Anomalies (System BBSMA). Bulletin of Institute of Geophysical and Geochemical Exploration, 4: 181-222 (in Chinese with English Abstract)
    Xiong, Y. H., Zuo, R. G., 2016. Recognition of Geochemical Anomalies Using a Deep Autoencoder Network. Computers & Geosciences, 86: 75-82. https://doi.org/10.1016/j.cageo.2015.10.006
    Xiong, Y. H., Zuo, R. G., 2018. GIS-Based Rare Events Logistic Regression for Mineral Prospectivity Mapping. Computers & Geosciences, 111: 18-25. https://doi.org/10.1016/j.cageo.2017.10.005
    Xiong, Y. H., Zuo, R. G., 2020. Recognizing Multivariate Geochemical Anomalies for Mineral Exploration by Combining Deep Learning and One-Class Support Vector Machine. Computers & Geosciences, 140: 104484. https://doi.org/10.1016/j.cageo.2020.104484
    Xiong, Y. H., Zuo, R. G., Carranza, E. J. M., 2018. Mapping Mineral Prospectivity through Big Data Analytics and a Deep Learning Algorithm. Ore Geology Reviews, 102: 811-817. https://doi.org/10.1016/j.oregeorev.2018.10.006
    Yu, Y. A., Liu, H. L., Li, J. M., et al., 2010. Discovery and Enlightenment of the Large-Scale Polymetallic Mineralization Belt in Ajile, Inner Mongolia. Geology and Prospecting, 46(5): 798-804 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201005004.htm
    Zhang, Z. J., Zuo, R. G., 2014. Sr-Nd-Pb Isotope Systematics of Magnetite: Implications for the Genesis of Makeng Fe Deposit, Southern China. Ore Geology Reviews, 57:53-60. https://doi.org/10.1016/j.oregeorev.2013.09.009
    Zhang, Z. J., Zuo, R. G., Xiong, Y. H., 2016. A Comparative Study of Fuzzy Weights of Evidence and Random Forests for Mapping Mineral Prospectivity for Skarn-Type Fe Deposits in the Southwestern Fujian Metallogenic Belt, China. Science China Earth Sciences, 59(3): 556-572. https://doi.org/10.1007/s11430-015-5178-3
    Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Analysis of Stream Sediment Data for Exploring the Zhunuo Porphyry Cu Deposit, Southern Tibet. Journal of Geochemical Exploration, 143:19-30. https://doi.org/10.1016/j.gexplo.2014.02.012
    Zuo, R. G., Carranza, E. J. M., Wang, J., 2016. Spatial Analysis and Visualization of Exploration Geochemical Data. Earth-Science Reviews, 158:9-18. https://doi.org/10.1016/j.earscirev.2016.04.006
    Zuo, R. G., 2020. Geodata Science-Based Mineral Prospectivity Mapping: A Review. Natural Resources Research, 29(6): 3415-3424. https://doi.org/10.1007/s11053-020-09700-9
    Zuo, R. G., 2011. Identifying Geochemical Anomalies Associated with Cu and Pb-Zn Skarn Mineralization Using Principal Component Analysis and Spectrum-Area Fractal Modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111(1/2): 13-22. https://doi.org/10.1016/j.gexplo.2011.06.012
    Zuo, R. G., 2018. Selection of an Elemental Association Related to Mineralization Using Spatial Analysis. Journal of Geochemical Exploration, 184:150-157. https://doi.org/10.1016/j.gexplo.2017.10.020
    Zuo, R. G., Cheng, Q. M., Agterberg, F. P., et al., 2009. Application of Singularity Mapping Technique to Identify Local Anomalies Using Stream Sediment Geochemical Data, a Case Study from Gangdese, Tibet, Western China. Journal of Geochemical Exploration, 101(3): 225-235. https://doi.org/10.1016/j.gexplo.2008.08.003
    Zuo, R. G., Wang, J., 2016. Fractal/Multifractal Modeling of Geochemical Data: A Review. Journal of Geochemical Exploration, 164:33-41. https://doi.org/10.1016/j.gexplo.2015.04.010
    Zuo, R. G., Wang, J. L., 2020. ArcFractal: An ArcGIS Add-In for Processing Geoscience Data Using Fractal/Multifractal Models. Natural Resources Research, 29(1): 3-12. https://doi.org/10.1007/s11053-019-09513-5
    Zuo, R. G., Xiong, Y. H., 2018. Big Data Analytics of Identifying Geochemical Anomalies Supported by Machine Learning Methods. Natural Resources Research, 27(1): 5-13. https://doi.org/10.1007/s11053-017-9357-0
    Zuo, R. G., Xiong, Y. H., 2020. Geodata Science and Geochemical Mapping. Journal of Geochemical Exploration, 209:106431. https://doi.org/10.1016/j.gexplo.2019.106431
    Zuo, R. G., Xiong, Y. H., Wang, J., et al., 2019. Deep Learning and Its Application in Geochemical Mapping. Earth-Science Reviews, 192:1-14. https://doi.org/10.1016/j.earscirev.2019.02.023
    Zuo, R. G., Zhang, Z. J., Zhang, D. J., et al., 2015. Evaluation of Uncertainty in Mineral Prospectivity Mapping due to Missing Evidence: A Case Study with Skarn-Type Fe Deposits in Southwestern Fujian Province, China. Ore Geology Reviews, 71:502-515. https://doi.org/10.1016/j.oregeorev.2014.09.024
    Zuzolo, D., Cicchella, D., Albanese, S., et al., 2018. Exploring Uni-Element Geochemical Data under a Compositional Perspective. Applied Geochemistry, 91:174-184. https://doi.org/10.1016/j.apgeochem.2017.10.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(981) PDF downloads(108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return