Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 34 Issue 2
Apr 2023
Turn off MathJax
Article Contents
Ji-Biao Zhang, Xiao-Zhong Ding, Yan-Xue Liu. Zircon SHRIMP U-Pb Ages, Geochemistry and Nd-Hf Isotopes of ~1.0 Ga A-Type Felsic Rocks in the Southwestern Yangtze Block, South China: Petrogenesis and Tectonic Implications. Journal of Earth Science, 2023, 34(2): 504-517. doi: 10.1007/s12583-020-1090-7
Citation: Ji-Biao Zhang, Xiao-Zhong Ding, Yan-Xue Liu. Zircon SHRIMP U-Pb Ages, Geochemistry and Nd-Hf Isotopes of ~1.0 Ga A-Type Felsic Rocks in the Southwestern Yangtze Block, South China: Petrogenesis and Tectonic Implications. Journal of Earth Science, 2023, 34(2): 504-517. doi: 10.1007/s12583-020-1090-7

Zircon SHRIMP U-Pb Ages, Geochemistry and Nd-Hf Isotopes of ~1.0 Ga A-Type Felsic Rocks in the Southwestern Yangtze Block, South China: Petrogenesis and Tectonic Implications

doi: 10.1007/s12583-020-1090-7
More Information
  • The petrogenesis and tectonic affinity of Late Mesoproterozoic igneous rocks in the Yangtze Block are important to understand its tectonic evolution within the context of the Rodinia supercontinent's reconstruction. Here, we report the SHRIMP zircon U-Pb ages, geochemistry, and Nd-Hf isotopic data for dacite from the Zegu Formation of the Dengxiangying Group in southwestern Yangtze Block. The crystallization age of the Zegu dacite is 1 037 Ma. These rocks have relatively high Ga, Zr, Hf, and HREE contents, as well as high (10 000 × Ga)/Al (2.7-2.9) and FeOt/MgO (3.8-10.5) ratios, showing a geochemical affinity of A-type granitoids. Moreover, they are characterized by negative εNd(t) (-3.6 to -7.5) and zircon εHf(t) values (-0.3 to -14.4), indicating that they likely generated via partial melting of an ancient continental crust source. The tectonic discriminant diagrams showed that the Zegu dacites have high Y and Nb contents (plotted in the 'within-plate' magmatic rocks field). In conclusion, the geochemistry and isotopic data indicated that the 1 037 Ma felsic volcanic rock in the Deng-xiangying Group generated during an intra-plate rift basin along a passive margin. Our work thus argues against a Grenvillian orogen's existence in the Yangtze Block. In view of the subsequent Neoproterozoic subduction-related magmatism in the region, we suggest that the Yangtze Block might have been along the periphery of the Rodinia.

     

  • loading
  • Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602–622. https://doi.org/10.1007/s00410-002-0364-7
    Brewer, T. S., Ahall, K. I., Menuge, J. F., et al., 2004. Mesoproterozoic Bimodal Volcanism in SW Norway, Evidence for Recurring Pre-Sveconorwegian Continental Margin Tectonism. Precambrian Research, 134(3/4): 249–273. https://doi.org/10.1016/j.precamres.200 4.06.003 doi: 10.1016/j.precamres.2004.06.003
    Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186: 173–194. https://doi.org/10.1016/j.earscirev.2017.06.001
    Champion, D. C., Bultitude, R. J., 2013. The Geochemical and SRND Isotopic Characteristics of Paleozoic Fractionated S-Types Granites of North Queensland: Implications for S-Type Granite Petrogenesis. Lithos, 162/163: 37–56. https://doi.org/10.1016/j.lithos.2012.11.022
    Chen, W. T., Zhou, M. F., Zhao, X. F., 2013. Late Paleoproterozoic Sedimentary and Mafic Rocks in the Hekou Area, SW China: Implication for the Reconstruction of the Yangtze Block in Columbia, Precambrian Research, 231: 61–77. https://doi.org/10.1016/j.precamres.2013.03.011
    Chen, Q., Sun, M., Long, X. P., et al., 2015. Petrogenesis of Neoproterozoic Adakitic Tonalites and High-K Granites in the Eastern Songpan-Ganze Fold Belt and Implications for the Tectonic Evolution of the Western Yangtze Block. Precambrian Research, 270: 181–203. https://doi.org/10.1016/j.precamres.2015.09.004
    Chen, W. T., Sun, W. H., Wang, W., et al., 2014. "Grenvillian" Intra-Plate Mafic Magmatism in the Southwestern Yangtze Block, SW China. Precambrian Research, 242: 138–153. https://doi.org/10.1016/j.preca mres.2013.12.019 doi: 10.1016/j.precamres.2013.12.019
    Chen, W. T., Sun, W. H., Zhou, M. F., et al., 2018. Ca. 1 050 Ma Intra-Continental Rift-Related A-Type Felsic Rocks in the Southwestern Yangtze Block, South China. Precambrian Research, 309: 22–44. https://doi.org/10.1016/j.precamres.2017.02.011
    Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189–200. https://doi.org/10.1007/bf00374895
    Cui, X. Z., Jiang, X. S., Wang, J., et al., 2015. Mid-Neoproterozoic Diabase Dykes from Xide in the Western Yangtze Block, South China: New Evidence for Continental Rifting Related to the Breakup of Rodinia Supercontinent. Precambrian Research, 268: 339–356. https://doi.org/10.1016/j.precamres.2015.07.017
    Deng, S. X., 2000. The Evolution of Metamorphism and Geochemistry for the Cangshan and Julin Groups in Central Yunnan, China: [Dissertation]. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou. 41–49 (in Chinese with English Abstract)
    Du, L. L., Guo, J. H., Nutman, A. P., et al., 2014. Implications for Rodinia Reconstructions for the Initiation of Neoproterozoic Subduction at ~860 Ma on the Western Margin of the Yangtze Block: Evidence from the Guandaoshan Pluton. Lithos, 196/197: 67–82. https://doi.org/10.1016/j.lithos.2014.03.002
    Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)0200641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
    Fan, W. M., Guo, F., Wang, Y. J., et al., 2001. Post-Orogenic Bimodal Volcanism along the Sulu Orogenic Belt in Eastern China. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9/10): 733–746. https://doi.org/10.1016/s1464-1895(01)00123-5
    Fisher, C. M., Vervoorta, J. D., Hancharb, J. M., et al., 2014. Guidelines for Reporting Zircon Hf Isotopic Data by LA-MC-ICPMS and Potential Pitfalls in the Interpretation of these Data. Chemical Geology, 363: 125–133. https://doi.org/10.1016/j.chemgeo.2013.10.019
    Frost, C. D., Bell, J. M., Frost, B. R., et al., 2001. Crustal Growth by Magmatic Underplating: Isotopic Evidence from the Northern Sherman Batholith. Geology, 29(6): 515. https://doi.org/10.1130/0091-7613(2001)0290515:cgbmui>2.0.co;2 doi: 10.1130/0091-7613(2001)0290515:cgbmui>2.0.co;2
    Frost, C. D., Frost, B. R., 2011. On Ferroan (a-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52(1): 39–53. https://doi.org/10.1093/petrology/egq070
    Gao, S., Ling, W. L., Qiu, Y. M., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13/14): 2071–2088. https://doi.org/10.1016/S0016-7037(99)00153-2
    Geng, Y. S., Kuang, H. W., Liu, Y. Q., et al., 2017. Subdivision and Correlation of the Mesoproterozoic Stratigraphy in the Western and Northern Margins of Yangtze Block. Acta Geologica Sinica, 91(10): 2151–2174 (in Chinese with English Abstract)
    Geng, Y. S., Yang, C. H., Wang, X. S., et al., 2008. Evolution of Metamorphic Basement in Western Margin of Yangtze Carton. Beijing (in Chinese)
    Greentree, M. R., Li, Z. X., Li, X. H., 2006. Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia. Precambrian Research, 151(1/2): 79–100. https://doi.org/10.1016/j.pre camres.2006.08.002 doi: 10.1016/j.precamres.2006.08.002
    Guo, J. L., Gao, S., Wu, Y. B., et al., 2014. 3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242: 82–95. https://doi.org/10.1016/j.precamres.2013.12.018
    Han, Q. S., Peng, S. B., Polat, A., et al., 2019. Petrogenesis and Geochronology of Paleoproterozoic Magmatic Rocks in the Kongling Complex: Evidence for a Collisional Orogenic Event in the Yangtze Craton. Lithos, 342/343: 513–529. https://doi.org/10.1016/j.lithos.2019.05.015
    Huang, H. Q., Li, X. H., Li, W. X., et al., 2011. Formation of High 18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China. Geology, 39(10): 903–906. https://doi.org/10.1130/g32080.1
    Hui, B., Dong, Y., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-Rock Geochemistry for the Neoarchean-Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301: 65–85. https://doi.org/10.1016/j.precamres.2017.09.003
    Kou, C. H., Liu, Y. X., Huang, H., et al., 2018. The Neoproterozoic Arc-Type and OIB-Type Mafic-Ultramafic Rocks in the Western Jiangnan Orogen: Implications for Tectonic Settings. Lithos, 312/313: 38–56. https://doi.org/10.1016/j.lithos.2018.05.004
    Li, Q. W., Zhao, J. H., 2018. The Neoproterozoic High-Mg Dioritic Dikes in South China Formed by High Pressures Fractional Crystallization of Hydrous Basaltic Melts. Precambrian Research, 309: 198–211. https://doi.org/10.1016/j.precamres.2017.04.009
    Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1/2): 186–204. https://doi.org/10.1016/j.lithos.2006.09.018
    Li, X. H., Li, Z. X., Zhou, H. W., et al., 2002. U-Pb Zircon Geochronology, Geochemistry and Nd Isotopic Study of Neoproterozoic Bimodal Volcanic Rocks in the Kangdian Rift of South China: Implications for the Initial Rifting of Rodinia. Precambrian Research, 113(1/2): 135–154. https://doi.org/10.1016/s0301-9268(01)00207-8
    Li, Z. X., Bogdanova, S. V., Collins, A. S., et al. 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1/2): 179–210. https://doi.org/10.1016/j.precamres.2007.04.021
    Li, Z. X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163. https://doi.org/10.1130/0091-7613(2002)0300163:gccisc>2.0.co;2 doi: 10.1130/0091-7613(2002)0300163:gccisc>2.0.co;2
    Ling, W. L., Gao, S., Zhang, B. R., et al., 2003. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China: Implications for Amalgamation and Break-up of the Rodinia Supercontinent. Precambrian Research, 122(1/2/3/4): 111–140. https://doi.org/10.1016/s0301-9268(02)00222-x
    Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 39
    Lu, G. M., Wang, W., Ernst, R. E., et al., 2019. Petrogenesis of Paleo-Mesoproterozoic Mafic Rocks in the Southwestern Yangtze Block of South China: Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 322: 66–84. https://doi.org/10. 1016/j.precamres.2018.12.019 doi: 10.1016/j.precamres.2018.12.019
    Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120–125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
    Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
    Peccerillo, A., Barberio, M. R., Yirgu, G., et al., 2003. Relationships between Mafic and Peralkaline Silicic Magmatism in Continental Rift Settings: A Petrological, Geochemical and Isotopic Study of the Gedemsa Volcano, Central Ethiopian Rift. Journal of Petrology, 44(11): 2003–2032. https://doi.org/10.1093/petrology/egg068
    Peng, P., Guo, J. H., Windley, B. F., et al., 2012. Petrogenesis of Late Paleoproterozoic Liangcheng Charnockites and S-Type Granites in the Central-Northern Margin of the North China Craton: Implications for Ridge Subduction. Precambrian Research, 222/223: 107–123. https://doi.org/10.1016/j.precamres.2011.06.002
    Rapp, R. P., 1995. Amphibole-out Phase Boundary in Partially Melted Metabasalt, Its Control over Liquid Fraction and Composition, and Source Permeability. Journal of Geophysical Research: Solid Earth, 100(B8): 15601–15610. https://doi.org/10.1029/95jb00913
    Ren, G. M., Pang, W. H., Sun, Z. M., et al., 2016. Zircon Shrimp U-Pb Dating of Meta-Dacite from Jiupanying Formation in Xide Area, Sichuan: Discussion on the New Understanding of the Dengxiangying Group. Journal of Mineralogy and Petrology, 36(3): 79–86 (in Chinese with English Abstract)
    Saunders, A. D., Tarney, J., 1984. Geochemical Characteristics of Basaltic Volcanism within Back-Arc Basins. Geological Society, London, Special Publications, 16(1): 59–76. https://doi.org/10.1144/gsl.sp.1984.016.01.05
    Shinjo, R., Kato, Y., 2000. Geochemical Constraints on the Origin of Bimodal Magmatism at the Okinawa Trough, an Incipient Back-Arc Basin. Lithos, 54(3/4): 117–137. https://doi.org/10.1016/s0024-4937(00)00034-7
    Sichuan Bureau of Geology (SBG), 1972. A Report of Regional Geological Survey in Yanbian Area of the People's Republic of China (the Scale of 1 : 200 000) (in Chinese)
    Su, J. B., Dong, S. W., Zhang, Y. Q., 2017. Orogeny Processes of the Western Jiangnan Orogen, South China: Insights from Neoproterozoic Igneous Rocks and a Deep Seismic Profile. Journal of Geodynamics, 103: 42–56. https://doi.org/10.1016/j.jog.2016.12.004
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Sun, W. H., Zhou, M. F., 2008. The ∼860-Ma, Cordilleran-Type Guandaoshan Dioritic Pluton in the Yangtze Block, SW China: Implications for the Origin of Neoproterozoic Magmatism. The Journal of Geology, 116(3): 238–253. https://doi.org/10.1086/587881
    Sun, W. H., Zhou, M. F., Gao, J. F., et al., 2009. Detrital Zircon U-Pb Geochronological and Lu-Hf Isotopic Constraints on the Precambrian Magmatic and Crustal Evolution of the Western Yangtze Block, SW China. Precambrian Research, 172(1/2): 99–126. https://doi.org/10.1 016/j.precamres.2009.03.010 doi: 10.1016/j.precamres.2009.03.010
    Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151–179. https://doi.org/10.1016/0024-4937(92)90029-x
    Ukstins, I. A., Renne, P. R., Wolfenden, E., et al., 2002. Matching Conjugate Volcanic Rifted Margins: 40Ar/39Ar Chrono-Stratigraphy of Pre- and Syn-Rift Bimodal Flood Volcanism in Ethiopia and Yemen. Earth and Planetary Science Letters, 198(3/4): 289–306. https://doi.org/10.1016/s0012-821x(02)00525-3
    Wang, L. J., Yu, J. H., Griffinc, W. L., et al., 2012. Early Crustal Evolution in the Western Yangtze Block: Evidence from U-Pb and Lu-Hf Isotopes on Detrital Zircons from Sedimentary Rocks. Precambrian Research, 222/223: 368–385. https://doi.org/10.1016/j.precamres.201 1.08.001 doi: 10.1016/j.precamres.2011.08.001
    Wang, Y. J., Zhu, W. G., Huang, H. Q., 2019. Ca. 1.04 Ga Hot Grenville Granites in the Western Yangtze Block, Southwest China. Precambrian Research, 328: 217–234. https://doi.org/10.1016/j.precamres.2019.04.024
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407–419. https://doi.org/10.1007/bf00402202
    Yan, Q. R., Hanson, A. D., Wang, Z. Q., et al., 2004. Neoproterozoic Subduction and Rifting on the Northern Margin of the Yangtze Plate, China: Implications for Rodinia Reconstruction. International Geology Review, 46(9): 817–832. https://doi.org/10.2747/0020-6814.46.9.817
    Yang, Y. J., Zhu, W. G., Bai, Z. J., et al., 2017. Petrogenesis and Tectonic Implications of the Neoproterozoic Datian Mafic-Ultramafic Dykes in the Panzhihua Area, Western Yangtze Block, SW China. International Journal of Earth Sciences, 106(1): 185–213. https://doi.org/10.1007/s00531-016-1310-7
    Zhang, C. H., Gao, L. Z., Wu, Z. J., et al., 2007. SHRIMP U-Pb Zircon Age of Tuff from the Kunyang Group in Central Yunnan: Evidence for Grenvillian Orogeny in South China. Chinese Science Bulletin, 52(11): 1517–1525 (in Chinese with English Abstract) doi: 10.1007/s11434-007-0225-x
    Zhang, L. J., Ma, C. Q., Wang, L. X., et al., 2011. Discovery of Paleoproterozoic Rapakivi Granite on the Northern Margin of the Yangtze Block and Its Geological Significance. Chinese Science Bulletin, 56(3): 306–318. https://doi.org/10.1007/s11434-010-4236-7
    Zhang, Y. Z., Wang, Y. J., 2016. Early Neoproterozoic (∼840 Ma) Arc Magmatism: Geochronological and Geochemical Constraints on the Metabasites in the Central Jiangnan Orogen. Precambrian Research, 275: 1–17. https://doi.org/10.1016/j.precamres.2015.11.006
    Zhang, Z. Q., Zhang, G. W., Tang, S. H., et al., 2001. On the Age of Metamorphic Rocks of the Yudongzi Group and the Archean Crystalline Basement of the Qinling Orogen. Acta Geologica Sinica, 75: 198–204 (in Chinese with English Abstract)
    Zhao, G. C., 2015. Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Research, 27(3): 1173–1180. https://doi.org/10.1016/j.gr.2014.09.004
    Zhao, J. H., Asimow, P. D., Zhou, M. F., et al., 2017. An Andean-Type Arc System in Rodinia Constrained by the Neoproterozoic Shimian Ophiolite in South China. Precambrian Research, 296: 93–111. https://doi.org/10.1016/j.precamres.2017.04.017
    Zhao, J. H., Li, Q. W., Liu, H., et al., 2018. Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge-Propagator. Earth-Science Reviews, 187: 1–18. https://doi.org/10.1016/j.earscirev.2018.10.004
    Zhao, J. H., Zhou, M. F., 2007a. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 152(1/2): 27–47. https://doi.org/10.10 16/j.precamres.2006.09.002 doi: 10.1016/j.precamres.2006.09.002
    Zhao, J. H., Zhou, M. F., 2007b. Neoproterozoic Adakitic Plutons and Arc Magmatism along the Western Margin of the Yangtze Block, South China. The Journal of Geology, 115(6): 675–689. https://doi.org/10.10 86/521610 doi: 10.1086/521610
    Zhao, J. H., Zhou, M. F., 2009. Melting of Newly Formed Mafic Crust for the Formation of Neoproterozoic I-Type Granite in the Hannan Region, South China. The Journal of Geology, 117(1): 54–70. https://doi.org/10.1086/593321
    Zhao, J. H., Zhou, M. F., Wu, Y. B., et al., 2019. Coupled Evolution of Neoproterozoic Arc Mafic Magmatism and Mantle Wedge in the Western Margin of the South China Craton. Contributions to Mineralogy and Petrology, 174(4): 1–16. https://doi.org/10.1007/s004 10-019-1573-7 doi: 10.1007/s00410-019-1573-7
    Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2008. Zircon Lu-Hf Isotopic Constraints on Neoproterozoic Subduction-Related Crustal Growth along the Western Margin of the Yangtze Block, South China. Precambrian Research, 163(3/4): 189–209. https://doi.org/10.1016/j.precamres.2007.11.003
    Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39(4): 299–302. https://doi.org/10.1130/g31701.1
    Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007a. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1/2): 127–150. https://doi.org/10.1016/j.lithos.200 6.10.003 doi: 10.1016/j.lithos.2006.10.003
    Zhou, M. F., Kennedy, A. K., Sun, M., et al., 2002. Neoproterozoic Arc-Related Mafic Intrusions along the Northern Margin of South China: Implications for the Accretion of Rodinia. The Journal of Geology, 110(5): 611–618. https://doi.org/10.1086/341762
    Zhou, M. F., Ma, Y. X., Yan, D. P., et al., 2006a. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 144(1/2): 19–38. https://doi.org/10.1016/j.precamres.2005.11.002
    Zhou, M. F., Yan, D. P., Wang, C. L., et al., 2006b. Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 248(1/2): 286–300. https://doi.org/10.1016/j.epsl.200 6.05.032 doi: 10.1016/j.epsl.2006.05.032
    Zhu Y., Lai S. C., Qin, J. F., et al., 2020a. Petrogenesis and Geochemical Diversity of Late Mesoproterozoic S-Type Granites in the Western Yangtze Block, South China: Co-Entrainment of Peritectic Selective Phases and Accessory Minerals. Lithos, 352/353: 105326. https://doi.org/10.1016/j.lithos.2019.105326
    Zhu, W. G., Zhong, H., Li, Z. X., et al., 2016. SIMS Zircon U-Pb Ages, Geochemistry and Nd-Hf Isotopes of Ca. 1.0 Ga Mafic Dykes and Volcanic Rocks in the Huili Area, SW China: Origin and Tectonic Significance. Precambrian Research, 273: 67–89. https://doi.org/10.1016/j.precamres.2015.12.011
    Zhu, Y., Lai, S. C., Qin, J. F., et al., 2019a. Petrogenesis and Geodynamic Implications of Neoproterozoic Gabbro-Diorites, Adakitic Granites, and A-Type Granites in the Southwestern Margin of the Yangtze Block, South China. Journal of Asian Earth Sciences, 183: 103977. https://doi.org/10.1016/j.jseaes.2019.103977
    Zhu, Y., Lai, S. C., Qin, J. F., et al., 2019b. Neoproterozoic Peraluminous Granites in the Western Margin of the Yangtze Block, South China: Implications for the Reworking of Mature Continental Crust. Precambrian Research, 333: 105443. https://doi.org/10.1016/j.precamr es.2019.105443 doi: 10.1016/j.precamres.2019.105443
    Zhu, Y., Lai, S. C., Qin, J. F., et al., 2020b. Genesis of ca. 850–835 Ma High-Mg# Diorites in the Western Yangtze Block, South China: Implications for Mantle Metasomatism under the Subduction Process, Precambrian Research, 343: 105738 doi: 10.1016/j.precamres.2020.105738
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(169) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return