Solanki, A. M., 2011. A Petrographic, Geochemical and Geochronological Investigation of Deformed Granitoids from SW Rajasthan: Neoproterozoic Age of Formation and Evidence of Pan-African Imprint: [Dissertation]. University of the Witwatersrand, Johannesburg |
Ashwal, L. D., Solanki, A. M., Pandit, M. K., et al., 2013. Geochronology and Geochemistry of Neoproterozoic Mt. Abu Granitoids, NW India: Regional Correlation and Implications for Rodinia Paleogeography. Precambrian Research, 236: 265-281. https://doi.org/10.1016/j.precamres.2013.07.018 |
Behn, M. D., Kelemen, P. B., Hirth, G., et al., 2011. Diapirs as the Source of the Sediment Signature in Arc Lavas. Nature Geoscience, 4(9): 641-646. https://doi.org/10.1038/ngeo1214 |
Bindeman, I. N., Eiler, J. M., Yogodzinski, G. M., et al., 2005. Oxygen Isotope Evidence for Slab Melting in Modern and Ancient Subduction Zones. Earth and Planetary Science Letters, 235(3/4): 480-496. https://doi.org/10.1016/j.epsl.2005.04.014 |
Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010 |
Buick, I. S., Clark, C., Rubatto, D., et al., 2010. Constraints on the Proterozoic Evolution of the Aravalli-Delhi Orogenic Belt (NW India) from Monazite Geochronology and Mineral Trace Element Geochemistry. Lithos, 120(3/4): 511-528. https://doi.org/10.1016/j.lithos.2010.09.011 |
Castro, A., Gerya, T., Garcia-Casco, A., et al., 2010. Melting Relations of MORB-Sediment Melanges in Underplated Mantle Wedge Plumes; Implications for the Origin of Cordilleran-Type Batholiths. Journal of Petrology, 51(6): 1267-1295. https://doi.org/10.1093/petrology/egq019 |
Castro, A., Vogt, K., Gerya, T., 2013. Generation of New Continental Crust by Sublithospheric Silicic-Magma Relamination in Arcs: A Test of Taylor's Andesite Model. Gondwana Research, 23(4): 1554-1566. https://doi.org/10.1016/j.gr.2012.07.004 |
Chappell, B. W., 1996. Compositional Variation within Granite Suites of the Lachlan Fold Belt: Its Causes and Implications for the Physical State of Granite Magma. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1/2): 159-170. https://doi.org/10.1017/s026359330000657x |
Choudhary, A. K., Gopalan, K., Sastry, C. A., 1984. Present Status of the Geochronology of the Precambrian Rocks of Rajasthan. Tectonophysics, 105(1/2/3/4): 131-140. https://doi.org/10.1016/0040-1951(84)90199-9 |
Condie, K. C., Baragar, W. R. A., 1974. Rare-Earth Element Distributions in Volcanic Rocks from Archean Greenstone Belts. Contributions to Mineralogy and Petrology, 45(3): 237-246. https://doi.org/10.1007/bf00383441 |
Deb, M., Thorpe, R. I., Krstic, D., et al., 2001. Zircon U-Pb and Galena Pb Isotope Evidence for an Approximate 1.0 Ga Terrane Constituting the Western Margin of the Aravalli-Delhi Orogenic Belt, Northwestern India. Precambrian Research, 108(3/4): 195-213. https://doi.org/10.1016/s0301-9268(01)00134-6 |
Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When Continents Formed. Science, 331(6014): 154-155. https://doi.org/10.1126/science.1201245 |
Eiler, J. M., 2001. Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle Rocks. Reviews in Mineralogy and Geochemistry, 43(1): 319-364. https://doi.org/10.2138/gsrmg.43.1.319 |
Eiler, J. M., McInnes, B., Valley, J. W., et al., 1998. Oxygen Isotope Evidence for Slab-Derived Fluids in the Sub-Arc Mantle. Nature, 393(6687): 777-781. https://doi.org/10.1038/31679 |
Eiler, J. M., Schiano, P., Valley, J. W., et al., 2007. Oxygen-Isotope and Trace Element Constraints on the Origins of Silica-Rich Melts in the Subarc Mantle. Geochemistry, Geophysics, Geosystems, 8(9): Q09012. https://doi.org/10.1029/2006gc001503 |
Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891): 837-840. https://doi.org/10.1038/nature00799 |
Gómez-Tuena, A., Mori, L., Rincón-Herrera, N. E., et al., 2008. The Origin of a Primitive Trondhjemite from the Trans-Mexican Volcanic Belt and Its Implications for the Construction of a Modern Continental Arc. Geology, 36(6): 471-474. https://doi.org/10.1130/g24687a.1 |
Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 |
Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 |
Hacker, B. R., Kelemen, P. B., Behn, M. D., 2011. Differentiation of the Continental Crust by Relamination. Earth and Planetary Science Letters, 307(3/4): 501-516. https://doi.org/10.1016/j.epsl.2011.05.024 |
Jagoutz, O., Schmidt, M. W., 2012. The Formation and Bulk Composition of Modern Juvenile Continental Crust: The Kohistan Arc. Chemical Geology, 298/299: 79-96. https://doi.org/10.1016/j.chemgeo.2011.10.022 |
Just, J., Schulz, B., de Wall, H., et al., 2011. Monazite CHIME/EPMA Dating of Erinpura Granitoid Deformation: Implications for Neoproterozoic Tectono-Thermal Evolution of NW India. Gondwana Research, 19(2): 402-412. https://doi.org/10.1016/j.gr.2010.08.002 |
Jweda, J., Bolge, L., Class, C., et al., 2015. High Precision Sr-Nd-Hf-Pb Isotopic Compositions of USGS Reference Material BCR-2. Geostandards and Geoanalytical Research, 40(1): 101-115. https://doi.org/10.1111/j.1751-908x.2015.00342.x |
Kelemen, P. B., 1995. Genesis of High Mg# Andesites and the Continental Crust. Contributions to Mineralogy and Petrology, 120(1): 1-19. https://doi.org/10.1007/s004100050054 |
Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154 |
Klein, E. M., 2003. Geochemistry of the Igneous Oceanic Crust. In: Heinrich, D. H., Karl, K. T., eds., Treatise on Geochemistry. Pergamon, Oxford, 433-463. https://doi.org/10.1016/B0-08-043751-6/03030-9 |
Kröner, A., Windley, B. F., Badarch, G., et al., 2007. Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Memoirs-Geological Society of America, 200: 181. https://doi.org/10.1130/2007.1200(11) |
Li, Q. L., Li, X. H., Liu, Y., et al., 2010. Precise U-Pb and Pb-Pb Dating of Phanerozoic Baddeleyite by SIMS with Oxygen Flooding Technique. Journal of Analytical Atomic Spectrometry, 25(7): 1107. https://doi.org/10.1039/b923444f |
Liu, C. Z., Wu, F. Y., Chung, S. L., et al., 2014. A 'Hidden' 18O-Enriched Reservoir in the Sub-Arc Mantle. Scientific Reports, 4(1): 4232. https://doi.org/10.1038/srep04232 |
Ludwig, K., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Barkeley Geochronology Center Special Publication, 4: 1-71 http://www.researchgate.net/publication/303107803_User's_manual_for_Isoplot_36_A_geochronological_toolkit_for_microsoft_excel_Berkeley_Geochronology_Center |
Lyu, P. L., Li, W. X., Wang, X. -C., et al., 2017. Initial Breakup of Supercontinent Rodinia as Recorded by ca. 860-840 Ma Bimodal Volcanism along the Southeastern Margin of the Yangtze Block, South China. Precambrian Research, 296: 148-167. https://doi.org/10.1016/j.precamres.2017.04.039 |
Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048 |
Mattey, D., Lowry, D., Macpherson, C., 1994. Oxygen Isotope Composition of Mantle Peridotite. Earth and Planetary Science Letters, 128(3/4): 231-241. https://doi.org/10.1016/0012-821x(94)90147-3 |
Miller, J. A., Cartwright, I., Buick, I. S., et al., 2001. An O-Isotope Profile through the HP-LT Corsican Ophiolite, France and Its Implications for Fluid Flow during Subduction. Chemical Geology, 178(1/2/3/4): 43-69. https://doi.org/10.1016/s0009-2541(00)00428-9 |
Moyen, J. F., Martin, H., 2012. Forty Years of TTG Research. Lithos, 148: 312-336. https://doi.org/10.1016/j.lithos.2012.06.010 |
Naik, M. S., 1993. The Geochemistry and Genesis of the Granitoids of Sirohi, Rajasthan, India. Journal of Southeast Asian Earth Sciences, 8(1/2/3/4): 111-115. https://doi.org/10.1016/0743-9547(93)90012-e |
Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth-A Testable Hypothesis. Earth-Science Reviews, 127: 96-110. https://doi.org/10.1016/j.earscirev.2013.09.004 |
Pandit, M. K., Carter, L. M., Ashwal, L. D., et al., 2003. Age, Petrogenesis and Significance of 1 Ga Granitoids and Related Rocks from the Sendra Area, Aravalli Craton, NW India. Journal of Asian Earth Sciences, 22(4): 363-381. https://doi.org/10.1016/s1367-9120(03)00070-1 |
Pandit, M. K., Shekhawat, L. S., Ferreira, V. P., et al., 1999. Trondhjemite and Granodiorite Assemblages from West of Barmer: Probable Basement for Malani Magmatism in Western India. Journal-Geological Society of India, 53: 89-96. https://doi.org/10.1144/gsjgs.156.1.0191 |
Pradhan, V. R., Meert, J. G., Pandit, M. K., et al., 2010. India's Changing Place in Global Proterozoic Reconstructions: A Review of Geochronologic Constraints and Paleomagnetic Poles from the Dharwar, Bundelkhand and Marwar Cratons. Journal of Geodynamics, 50(3/4): 224-242. https://doi.org/10.1016/j.jog.2009.11.008 |
Rapp, R. P., Shimizu, N., Norman, M. D., 2003. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 425(6958): 605-609. https://doi.org/10.1038/nature02031 |
Reagan, M. K., Hanan, B. B., Heizler, M. T., et al., 2008. Petrogenesis of Volcanic Rocks from Saipan and Rota, Mariana Islands, and Implications for the Evolution of Nascent Island Arcs. Journal of Petrology, 49(3): 441-464. https://doi.org/10.1093/petrology/egm087 |
Roy, A. B., Jakhar, S. R., 2002. Geology of Rajasthan (Northwest India)-Precambrian to Recent. Scientific Publishers (India), Jodhpur. xii+421 |
Smith, P. M., Asimow, P. D., 2005. Adiabat_1ph: A New Public Front-End to the MELTS, PMELTS, and PHMELTS Models. Geochemistry, Geophysics, Geosystems, 6(2): Q02004. https://doi.org/10.1029/2004gc000816 |
Solanki, A. M., 2011. A Petrographic, Geochemical, and Geochronological Investigation of Deformed Granitoids from SW Rajasthan: Neoproterozoic Age of Formation and Evidence of Pan-African Imprint: [Dissertation]. University of the Witwatersrand, Johannesburg. 216 |
Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3/4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 |
Spandler, C., Pirard, C., 2013. Element Recycling from Subducting Slabs to Arc Crust: A Review. Lithos, 170/171:208-223. https://doi.org/10.1016/j.lithos.2013.02.016 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
Valley, J. W., Bindeman, I. N., Peck, W. H., 2003. Empirical Calibration of Oxygen Isotope Fractionation in Zircon. Geochimica et Cosmochimica Acta, 67(17): 3257-3266. https://doi.org/10.1016/s0016-7037(03)00090-5 |
Valley, J. W., Kinny, P. D., Schulze, D. J., et al., 1998. Zircon Megacrysts from Kimberlite: Oxygen Isotope Variability among Mantle Melts. Contributions to Mineralogy and Petrology, 133(1/2): 1-11. https://doi.org/10.1007/s004100050432 |
Valley, J. W., Lackey, J. S., Cavosie, A. J., et al., 2005. 4.4 Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatic Zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580. https://doi.org/10.1007/s00410-005-0025-8 |
Van Lente, B., Ashwal, L. D., Pandit, M. K., et al., 2009. Neoproterozoic Hydrothermally Altered Basaltic Rocks from Rajasthan, Northwest India: Implications for Late Precambrian Tectonic Evolution of the Aravalli Craton. Precambrian Research, 170(3/4): 202-222. https://doi.org/10.1016/j.precamres.2009.01.007 |
Vervoort, J. D., Plank, T., Prytulak, J., 2011. The Hf-Nd Isotopic Composition of Marine Sediments. Geochimica et Cosmochimica Acta, 75(20): 5903-5926. https://doi.org/10.1016/j.gca.2011.07.046 |
Volpe, A. M., Macdougall, J. D., 1990. Geochemistry and Isotopic Characteristics of Mafic (Phulad Ophiolite) and Related Rocks in the Delhi Supergroup, Rajasthan, India: Implications for Rifting in the Proterozoic. Precambrian Research, 48(1/2): 167-191. https://doi.org/10.1016/0301-9268(90)90061-t |
Wang, X.-C., Li, Z.-X., Li, X.-H., et al., 2011. Nonglacial Origin for Low-18O Neoproterozoic Magmas in the South China Block: Evidence from New in-situ Oxygen Isotope Analyses Using SIMS. Geology, 39(8): 735-738. https://doi.org/10.1130/g31991.1 |
Wang, X.-C., Wilde, S. A., Xu, B., et al., 2016. Origin of Arc-Like Continental Basalts: Implications for Deep-Earth Fluid Cycling and Tectonic Discrimination. Lithos, 261:5-45. https://doi.org/10.1016/j.lithos.2015.12.014 |
White, L. T., Ireland, T. R., 2012. High-Uranium Matrix Effect in Zircon and Its Implications for SHRIMP U-Pb Age Determinations. Chemical Geology, 306/307:78-91. https://doi.org/10.1016/j.chemgeo.2012.02.025 |
Wu, T., Zhou, J.-X., Wang, X.-C., et al., 2018. Identification of Ca. 850 Ma High-Temperature Strongly Peraluminous Granitoids in Southeastern Guizhou Province, South China: A Result of Early Extension along the Southern Margin of the Yangtze Block. Precambrian Research, 308:18-34. https://doi.org/10.1016/j.precamres.2018.02.007 |
Yamaoka, K., Ishikawa, T., Matsubaya, O., et al., 2012. Boron and Oxygen Isotope Systematics for a Complete Section of Oceanic Crustal Rocks in the Oman Ophiolite. Geochimica et Cosmochimica Acta, 84:543-559. https://doi.org/10.1016/j.gca.2012.01.043 |
Zhu, G. Z., Gerya, T. V., Tackley, P. J., et al., 2013. Four-Dimensional Numerical Modeling of Crustal Growth at Active Continental Margins. Journal of Geophysical Research: Solid Earth, 118(9): 4682-4698. https://doi.org/10.1002/jgrb.50357 |